• 제목/요약/키워드: Jet Velocity

검색결과 836건 처리시간 0.03초

대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구 (Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines)

  • 응우엔반득;이창우
    • 터널과지하공간
    • /
    • 제29권6호
    • /
    • pp.480-507
    • /
    • 2019
  • 본 논문은 무풍관 선풍기를 이용한 대단면 갱내 국부통기시스템의 최적화를 목적으로 한다. 갱내 맹갱도 형태의 작업공간을 대상으로 일련의 CFD분석과 현장실험을 수행하였다. 선풍기 위치, 운전방식 및 배치가 최적화의 주요 대상변수이다. 국부선풍기에서 토출되는 제트류는 대부분의 경우, 풍속이 15m/s이상으로 고속이므로 토출 후 갱도 바닥, 내벽, 천정 그리고 다른 선풍기에서 토출되는 제트류와 충돌할 가능성이 있다. 따라서 충돌시 상당한 에너지 손실이 발생하므로 통기 효율이 급격히 저하될 수 있다. 본 논문에서 최적 선풍기 간격은 제트류가 충돌 없이 최대의 유동거리를 유지할 수 있는 거리로 정의하며, 반면 단면상의 최적 위치란 갱도내벽과의 충돌 가능성이 최소화된 위치로 정의하였다. 따라서 선풍기 설치위치의 최적화는 통기의 효율뿐만 아니라 에너지 비용 또한 최소화가 가능하다. 3차원 CFD분석을 위하여 다양한 갱내 맹갱도 작업공간을 가정하였다. 무풍관 국부통기의 설계 및 최적화를 위하여 풍속 및 CO농도 분포를 CFD분석하였으며 동시에 비교 목적으로 현장실험을 수행하였다. 본 논문의 궁극적인 목적은 풍관을 사용하기 않는 국부통기시스템을 최적화함으로써 대단면 맹갱도 작업공간에 고효율, 저비용 국부통기를 가능케하여 깨끗하고 안전한 작업환경을 확보하기 위함이다.

여과집진기의 탈진 성능 향상을 위한 충격 기류 분사 시스템 최적화 설계에 관한 연구 (A study on the optimization design of pulse air jet system to improve bag-filter performance)

  • 홍성길;정유진;박기우;정문헌;임기혁;서혜민;손병현
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3792-3799
    • /
    • 2012
  • 본 연구에서는 전산유체역학(CFD)을 이용하여 산업체에 널리 적용되고 있는 충격기류형 탈진시스템의 탈진 특성을 규명하고, 그 성능을 향상시키기 위해 탈진부 유니트(unit) 형상을 개조한 경우의 탈진 성능을 비교하였다. 탈진부 각 형상별로 탈진 공기량과 기류 분포, 유입속도 분포 등을 검토한 결과, 블로우 튜브에 노즐을 설치한 경우(Case 3)와 벤츄리에 이중 유입관을 설치한 경우(Case4, 5)가 현재 현장에서 널리 적용되고 있는 구조(Case 1)에 비해 탈진 공기량의 증폭 효과 및 기류 폭의 확장 현상이 우수한 것으로 예측되었다. 선정된 Case-5를 상용 백필터의 사양(직경 150 mm)에 적용하기 위해 벤츄리 제원을 결정한 결과, 내측 유입관의 직경 50 mm, 외측 유입관의 직경 90 mm의 제원을 적용하면 탈진 공기량을 최대로 유지할 수 있을 것으로 판단된다.

두록 정자의 운동학적 특성과 후보 유전자 ESR2 유전적 다형성과의 연관성 분석 (Investigation on Association of ESR2 polymorphism as a Candidate Gene for Duroc sperm motility and kinematic characteristics)

  • 정용대;정진영;사수진;김기현;조은석;유동조;최정우;장현준;우제석;박성권
    • 한국수정란이식학회지
    • /
    • 제31권3호
    • /
    • pp.287-291
    • /
    • 2016
  • For evaluating the boar semen quality, sperm motility (MOT) is an important parameter because the movement of spermatozoa indicates active metabolism, membrane integrity and fertilizing capacity. Estrogen receptors 2(ESR2) is involved in estrogen related apoptosis in cell cycle spermatogenesis, but their functions have not been confirmed in pig until now. Therefore, this study was conducted to analyze their association with sperm motility and kinematic characteristics. DNA samples from 105 Duroc pigs with records of semen motility and kinematic characteristics [Total motile spermatozoa (MOT), Curvilinear velocity(VCL), Straight-line velocity(VSL), the ratio between VSL and VCL(LIN), Amplitude of Lateral Head displacement(ALH)] were analyzed. A SNP in coding region of ESR2 g.35547A > G in exon 5 was associated with MOT (p < 0.05) in Duroc population. Therefore, we suggest that the porcine ESR2 gene may be used as a molecular marker for Duroc boar semen quality, although its functional effects were not defined yet. These results might shed new light on the roles of ESR2 in spermatogenesis as candidate gene for boar fertility, but still the lack of association across populations should be considered.

레이저 도플러 원리를 이용한 유체 가속도 측정 (Effect of fringe divergence in fluid acceleration measurement using LDA)

  • 전세종;홀거노박;캠트로피아;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1546-1551
    • /
    • 2004
  • The laser Doppler technique is well-established as a velocity measurement technique of high precision for flow velocity. Recently, the laser Doppler technique has also been used to measure acceleration of fluid particles. Acceleration is interesting from a fluid mechanics point of view, since the Navier Stokes equations, specifically the left-hand-side, are formulated in terms of fluid acceleration. Further, there are several avenues to estimating the dissipation rate using the acceleration. However such measurements place additional demands on the design of the optical system; in particular fringe non-uniformity must be held below about 0.0001 to avoid systematic errors. Relations expressing fringe divergence as a function of the optical parameters of the system have been given in the literature; however, direct use of these formulae to minimize fringe divergence lead either to very large measurement volumes or to extremely high intersection angles. This dilemma can be resolved by using an off-axis receiving arrangement, in which the measurement volume is truncated by a pinhole in front of the detection plane. In the present study an optical design study is performed for optimizing laser Doppler systems for fluid acceleration measurements. This is followed by laboratory validation using a round free jet and a stagnation flow, two flows in which either fluid acceleration has been previously measured or in which the acceleration is known analytically. A 90 degree off-axis receiving angle is used with a pinhole or a slit.

  • PDF

Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구 (Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method)

  • 김사엽;오윤중;박성욱;이창식
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.

배플판 형상이 다른 Gun식 가스버너의 난류유동 특성치 고찰 (Investigation on the Turbulent Flow Characteristics of a Gun-Type Gas Burner with the Different Shape of Baffle Plate)

  • 김장권;정규조
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.475-485
    • /
    • 2004
  • This paper was studied to investigate and compare the effects of inclined baffle plate on the turbulent flow characteristics of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. For this purpose, two burner models with a cone-type baffle plate and a flat-type one respectively were used. The fast jet flow spurted from slits plays a role such as an air-curtain because it encircles rotational flow by swirl vanes and drives mixed main flow to axial direction regardless of the inclination of baffle plate. The inclined baffle plate causes axial mean velocity component and turbulent intensities etc. to be greatly concentrated towards the central part of a burner, and its effect especially appears in the range of about X/R=1.0-2.0. Also, it gives much larger size to axial mean velocity component and turbulent intensities etc formed near the slits in the range of X/R=1.4103. Especially the inclined baffle plate shifts more the Reynolds shear stress uw to the central region of a burner(Y/R=${\pm}$0.75) than the flat-type one, moreover it develops more strongly than uv.

공기액체질량비에 따른 이류체 선회형 분사의 분무거동 및 미립화 특성 (Feature of Spray Transport and Atomization from Two-Phase Swirling Jet with Air-to-Liquid Mass Ratio)

  • Lee, Sam-Goo
    • 한국추진공학회지
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 2004
  • 선회형 미립화기의 분무거동에 관한 논의는 현재 여러 연구자들에 의해 활발히 논의되고 있다. 본 연구에서는 이류체 내부혼합형 선회노즐의 특성을 파악하고자 공기와 액체의 질량 비를 바꿔가며 최적의 미립화 조건을 알아보기 위하여 실시되었다. 이를 위하여 분무 유동장의 평균속도, 파동속도 및 액적크기에 관한 비교를 정량적으로 분석하였다. 각 유동조건에 따른 지수함수를 만족하는 상관관계 또한 도출하였는데, 이는 질량 비에 관계없이 거의 동일함을 알 수 있었고, 질량비가 높을수록 선회 각이 30o인 경우가 미립화 특성이 가장 우수하였다. 따라서, 본 연구에서 이루어진 결과에서는 노즐의 형상이 분무유동에 미치는 여러 인자 중 가장 중요한 것이라 여겨진다.

콘형 배플판을 갖는 Gun식 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할 (The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Gun-Type Gas Burner with a Cone-Type Baffle Plate)

  • 김장권;정규조
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.466-475
    • /
    • 2003
  • The gun-type gas burner adopted in this study is generally composed of eight slits and swirl vanes. Thus, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 $\ell$/min in the test section of subsonic wind tunnel. The axial mean velocity component in the case of burner model with only swirl vanes shows the characteristic that spreads more remarkably toward the radial direction than axial one, it does, however, directly opposite tendency in the case of burner model with only slits. Consequently. both slits and swirl vanes composing of gun-type gas burner play an important role in decrease of the speed near slits and increase of the flow speed in the central part of a burner because the biggest speed spurted from slits encircles rotational flow by swirl vanes and it drives main flow toward the axial direction. Moreover, the turbulent intensities and turbulent kinetic energy of gun-type gas burner are distributed with a fairly bigger size within X/R<0.6410 than burner models which have only slits or swirl vanes because the rotational flow by swirl vanes and the fast jet flow by slits increase flow mixing, diffusion, and mean velocity gradient effectively.

PIV를 이용한 인공심장용 폴리우레탄 인공판막 하류의 유동 측정 : 맥동유동실험 (PIV Measurements of Flow Downstream of Polyurethane Heart Valve Prosthesis for Artificial Heart: Pulsatile Flow Experiment)

  • 유정열;김중경;성재용;장준근;민병구
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.629-639
    • /
    • 2002
  • In-vitro flow characteristics downstream of a polyurethane artificial heart valve and a Bjork-Shiley Monostrut mechanical valve have been comparatively investigated in pulsatile flow using particle image velocimetry (PIV). With a triggering system and a time-delayed circuit the velocity distributions on the two perpendicular measurement planes downstream of the valves are evaluated at any given instant in conjunction with the opening behaviors of valve leaflets during a cardiac cycle. The regions of stasis and high shear stress can be found simultaneously by examining the entire view of the instantaneous velocity and Reynolds shear stress fields. It is known that high shear stress regions exist at the interface between strong axial jet flows along the wall and vortical flows in the central area distal to the valves. In addition. there are large stagnation or recirculation regions in the vicinity of the valve leaflet, where thrombus formation can be induced by accumulation of blood elements damaged in the high shear stress zones. A correlation between the unsteady flow patterns downstream of the valve and the corresponding opening postures of the polyurethane valve membrane gives useful data necessary for improved design of the frame structure and leaflet geometry of the polyurethane valve.

냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions)

  • 함진기;조형희
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.