• Title/Summary/Keyword: Jet Core Length

Search Result 27, Processing Time 0.024 seconds

A Fundamental Study of Supersonic Coaxial Jets for Gas Cutting (가스절단용 초음속 제트유동에 관한 기초적 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.837-844
    • /
    • 2001
  • Jet cutting technology currently makes use of a generic supersonic gas jet to improve the cutting speed and performance. In order to get a better understanding of the flow characteristics involved in the supersonic jet cutting technology, the axisymmetric Navier-Stokes equations have been solved using a fully implicit finite volume method. Computations have been conducted to investigate some major characteristics of supersonic coaxial turbulent jets. An assistant gas jet has been imposed on the primary gas jet to simulate realistic jet cutting circumstance. The pressure and the temperature ratios of the primary and assistant gas jets are altered to investigate the major characteristics of the coaxial jets. The total pressure and Mach number distributions, shock wave systems, and the jet core length which characterize the coaxial jet flows are strongly affected by the pressure ratio, but not significantly dependent on the total temperature ratio. The assistant gas jet greatly affects the basic flow characteristics of the shock system and the core length of under and over-expanded jets.

Study of the Correctly-Expanded Supersonic Jets (초음속 적정 팽창 제트 유동에 관한 연구)

  • Jeong Mi-Seon;Kim Jae-Hyung;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.127-130
    • /
    • 2002
  • Supersonic jet flow has been applied to many various industrial applications of manufacturing fields. Such a supersonic jet is generally classified by three flow patterns, depending on the flow state at nozzle exit, that is, under-, correctly- and over-expanded flows. Of these three flows, the correctly-expanded supersonic jet is most frequently used since it provides a maximum performance of a flow device. However detailed information on what conditions are the Jet correctly expanded at the exit of nozzle is not well known. In the current study, computations are applied to the axisymmetric, compressible, Navier-Stokes equations. The design Mach number used are 2.0,1.2 and 2.6. The computational results obtained are compared with the previous experimental ones. A theoretical analysis is conducted to predict the major features of the correctly-expanded jet. The results show that the jet core length is increased as Mach number is increased.

  • PDF

A Computational Study of the Supersonic Coherent Jet (초음속 코히어런트 제트에 관한 수치해석적 연구)

  • Jeong, Mi-Seon;Sanal Kumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.490-495
    • /
    • 2003
  • In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets.

  • PDF

Experimental Study on the Flow Characteristics of Sinusoidal Nozzle Jet (정현파 형상 노즐 제트의 유동특성에 관한 실험적 연구)

  • Kim, Hak-Lim;Rajagopalan, S.;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • Two turbulent jet with different sinusoidal nozzle exit configurations of in-phase and $180^{\circ}$ out-of-phase were investigated experimentally using a smoke-wire method and a hot-wire anemometry. Mean velocity and turbulence intensity were measured at several downstream locations under $Re_D\;=\;5000$. For the case of in-phase nozzle configuration, the length of potential core exhibits negligible difference with respect to the transverse locations (0, $\lambda/4$ and $\lambda/2$), similar to that of a plane jet. On the other hand, a maximum difference of 30% in the potential-core length occurs for the $180^{\circ}$ out-of-phase configuration. The spatial distributions of turbulence intensities also show significant difference for the nozzle of $180^{\circ}$ out-of-phase, whereas non-symmetric distribution is observed in the near-exit region(x/D = 1) for the in-phase sinusoidal nozzle jet. Compared to a slit planc jet, the sinusoidal nozzle jets seem to suppress the velocity deficit as the flow goes downstream. The sinusoidal nozzle jet was found to decrease turbulent intensity dramatically. The flow visualization results show that the flow characteristics of the sinusoidal nozzle jet are quite different from those of the slit plane jet.

Experimental Study on Characteristics of Micro-Supersonic Jet Flows (마이크로 초음속 제트유동 특성에 관한 실험적 연구)

  • Kim, Jong-Hun;Bang, Jin-Young;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.774-779
    • /
    • 2008
  • An experimental study on the micro-supersonic jet flow fields has been carried out. A sonic nozzle of 440 ${\mu}m$-exit diameter and a Laval nozzle of 800 ${\mu}m$ exit diameter with the nozzle exit Mach number 2.0 were fabricated by stretching a micro Pyrex glass tube for the present experiments. Schlieren flow visualization and Pitot pressure distribution of the jet flow field were obtained. Representative characteristics of the jet flow fields such as, supersonic length, jet core length, similarity of the velocity field, and jet spreading rates, have been observed. All the results were compared to previous observations of larger supersonic jets of higher Reynolds numbers, and it was found that overall characteristics of the micro supersonic jet are qualitatively similar as those of the higher Reynolds number jets, except the jet core length and the jet spreading rate.

An Analysis on the Protection Mechanism of Some Inert Reactive Cassettes (비활성 요소의 방호 메커니즘 분석)

  • Joo, Jae-Hyun;Choi, Joon-Hong;Lee, Heon-Joo;Lee, Chang-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.550-556
    • /
    • 2012
  • In this study, a series of ballistic experiments have been performed to investigate the protection mechanism of some inert reactive cassettes against shaped charge jet. Three kinds of material were tested as a core material of the inert cassettes, i.e. one of rubber materials, a high modulus and high strength composite material used for ballistic protection and a mixture of energetic materials. Parameters such as deformation of the cassettes, occurrence time of jet distortion, leading jet length and residual penetration depth were investigated from the experiments and they were compared to each other quantitatively according to the jet incidence angles. The results show that the increment of cassette deformation caused jet distortion to occur early and jet distortion brought decrease of the length of leading jet. Then the decrease of the length of leading jet accompanied the decrease of residual penetration depth.

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet ( 2 ) - With Acoustic Excitation - (원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 ( 2 ) - 음향여기된 제트 -)

  • Hwang, Sang-Dong;Lee, Chang-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.373-381
    • /
    • 2000
  • The flow and heat transfer characteristics on the impingement surface can be controlled by the change of vortex with the acoustic excitation, because the flow characteristics of an impinging jet are affected strongly by the vortices formed at the jet exit. To investigate the effects of acoustic excitation, we measured the velocity, turbulent intensity distributions for the free jet and local heat transfer coefficients on a impingement surface. As the acoustic excitation, subharmonic frequency of excited frequency plays an important role to the control of the jet flow. If the vortex pairings are promoted by the acoustic excitation, turbulence intensity of the jet flow is increased quickly. On the other hand if the vortex pairings are suppressed, the jet flow has low turbulence intensity at the center of the jet. Therefore, the low heat transfer rates are obtained on the impingement plate for a small nozzle-to-plate distance. However, it has high heat transfer rates at a large distance between the nozzle and plate due to the increasing of potential-core length.

Experimental Studies on Flow Characteristics and Thrust Vectoring of Controlled Axisymmetric Jets (원형분사제트 조절을 통한 유동특성 및 제트 벡터링의 효과 고찰)

  • 조형희;이창호;이영석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.33-45
    • /
    • 1997
  • Axisymmetric shear layers around a free jet is forced by co-flowing and counter-flowing secondary jets from/to an annular tube around the jet nozzle. The jet potential core extends far downstream with co-flowing secondary jets due to inhibited vortex developing and pairing. For counter-flowing cases, the axisymmetric shear layer around the jet transits from convective instability to absolute instability for velocity ratios R=1.3~l.65 for the uniform velocity jets. Consequently, the jet potential core length increases and the turbulence level in the jet core is reduced significantly. The jets are controlled better with extension collars attached to the outer nozzle exit because the annular secondary flow is guided well by the extension collars. For the vectoring of jet, the annular tube around the jet is divided in two parts and the only one part is used for suction. The half suction makes the different shear layer around the jet and vectoring the jet by Coanda effect. The vectoring and turbulent components are varied significantly by the suction ratio. The experiments are carried out to investigate the characteristics of forced free jets using flow visualization, velocity and turbulence measurements.

  • PDF

The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets (환형동축 초음속 자유 제트유동에 관한 실험적 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.323-328
    • /
    • 2001
  • Supersonic coaxial, axisymmetric, jets issuing from various kinds of dual coaxial nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with an impinging angle in the jet axis of the annular jets were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio produces longer supersonic length of the dual, coaxial jet.

  • PDF