• Title/Summary/Keyword: Jeongho Kim

Search Result 154, Processing Time 0.025 seconds

Development of Improving Water Quality in Eutrophic Lake Using Microalgal Cultivation (미세조류 배양을 이용한 부영양호 내 수질 개선 기술 개발)

  • Kim, Ki-Hyun;Kang, Sung-Mo;Cho, Yonghee;Jeon, Sanghyun;Kim, Jun-Ho;Park, Hanwool;Lee, Yunwoo;Jeong, Jeongho;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2018
  • There are many eutrophic lakes by point and non-point pollution sources such as in dustrial waste water, domestic raw sewage, and mucks. The eutrophic lakes not only cause algal blooms but also destroy the ecosystem in the lakes due to high nutrient concentrations. The purpose of this study was to improve water quality in eutrophic lakes by cultivating microalgae using photobioreactors (PBRs) with selectively permeable mesh (SPM), supplying nutrients in the lake and inhibiting cell leakage by diffusion and water permeability. Chlorella vulgaris, was cultivated using PBRs with SPM installed in Inkyung Lake located in Inha university, Incheon, Korea. When cultivating C. vulgaris, $8.3g/m^2/day$ of average biomass productivity was obtained at 3 days. Furthermore, concentrations of total nitrogen and phosphorus were reduced by 35.7% and 84.2%, respectively, compared to initial condition and water quality in eutrophic lake was improved to oligotrophic environment. These results suggest that microalgal cultivation using PBRs with SPM in the lake could produce microalgal biomass as well as improve water quality by decreasing nutrient concentrations.

Analysis of Baseflow using Future Land Use and Climate Change Scenario (토지이용 및 기후 예측자료를 활용한 미래 기저유출 분석)

  • Choi, Yujin;Kim, Jonggun;Lee, Dong Jun;Han, Jeongho;Lee, Gwanjae;Park, Minji;Kim, Kisung;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.45-59
    • /
    • 2019
  • Since the baseflow, which constitutes most of the river flow in the dry season, plays an important role in the solution of river runoff and drought, it is important to accurately evaluate the characteristics of the baseflow for river management. In this study, land use change was evaluated through time series data of land use, and then baseflow characteristics were analyzed by considering climate change and land use change using climate change scenarios. The results showed that the contribution of baseflow of scenarios considering both climate change and land use change was lower than that of scenarios considering only climate change for yearly and seasonal analysis. This implies that land use changes as well as climate changes affect base runoff. Thus, if we study the watershed in which the land use is occurring rapidly in the future, it is considered that the study should be carried out considering both land use change and climate change. The results of this study can be used as basic data for studying the baseflow characteristics in the Gapcheon watershed considering various land use changes and climate change in the future.

Development of NO2/NOx Ratio Estimation Model for Urea-SCR System Application on Non-road Diesel Engine (비도로용 디젤엔진의 Urea SCR system 적용을 위한 NO2/NOx ratio 예측모델 개발에 관한 연구)

  • Kang, Seokho;Kim, Hoonmyung;Kang, Jeongho;Park, Eunyong;Kwon, Ohyun;Kim, Daeyeol
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.178-187
    • /
    • 2020
  • The current emission regulations, US Tier-4 and EU Stage-V, are only able to satisfy the regulations when all currently mass-produced emission reduction technologies such as EGR, DOC, DPF, and SCR are applied. Therefore, in this study, for the application of the Urea-SCR system to non-road diesel engines, the database was established by measuring the NO, NO2 concentration and calculating the NO2/NOx ratio based on the catalyst temperature and exhaust mass flow rate. Also, based on the measured NO2/NOx ratio data, a mathematical model was proposed to predict the NO2/NOx ratio at SCR catalyst, and the suitability of the model was verified through steady-state and transient mode. As a result of comparing the NO2/NOx ratio measured at the DOC outlet under the steady-state condition to two model values separately, the R2 was 0.9811 for the 3D map model and 0.9303 for the mathematical model. And in the case of the NO2/NOx ratio measured at the DPF outlet, the R2 was 0.9797 for the 3D map model and 0.935 for the mathematical model. It was confirmed that the R2 with the model value of the 3D Map of the mathematical model in the transient mode is 0.957, which shows high reliability.

Improvement of Calculation Accuracy in the Electron Monte Carlo Algorithm with Optional Air Profile Measurements

  • Sung, Jiwon;Jin, Hyeongmin;Kim, Jeongho;Park, Jong Min;Kim, Jung-in;Choi, Chang Heon;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.163-171
    • /
    • 2020
  • Purpose: In this study, the accuracies of electron Monte Carlo (eMC) calculation algorithms were evaluated to determine whether electron beams were modeled by optional air profiles (APs) designed for each applicator size. Methods: Electron beams with the energies of 6, 9, 12, and 16 MeV for VitalBeam (Varian Medical System, Palo Alto, CA, USA) and 6, 9, 12, 16, and 20 MeV for Clinac iX (Varian Medical System) were used. Optional APs were measured at the source-to-detector distance of 95 cm with jaw openings appropriate for each machine, electron beam energy, and applicator size. The measured optional APs were postprocessed and converted into the w2CAD format. Then, the electron beams were modeled and calculated with and without optional APs. Measured profiles, percentage depth doses, penumbras with respect to each machine, and energy were compared to calculated dose distributions. Results: For VitalBeam, the profile differences between the measurement and calculation were reduced by 0.35%, 0.15%, 0.14%, and 0.38% at 6, 9, 12, and 16 MeV, respectively, when the beams were modeled with APs. For Clinac iX, the differences were decreased by 0.16%, -0.31%, 0.94%, 0.42%, and 0.74%, at 6, 9, 12, 16, and 20 MeV, respectively, with the insertion of APs. Of note, no significant improvements in penumbra and percentage depth dose were observed, although the beam models were configured with APs. Conclusions: The accuracy of the eMC calculation can be improved in profiles when electron beams are modeled with optional APs.

Electron Field Emission Characteristics of Silicon Nanodots Formed by the LPCVD Technique (LPCVD로 형성된 실리콘 나노점의 전계방출 특성)

  • An, Seungman;Yim, Taekyung;Lee, Kyungsu;Kim, Jeongho;Kim, Eunkyeom;Park, Kyoungwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.342-347
    • /
    • 2011
  • We fabricated the silicon nanodots using the low pressure chemical vapor deposition technique to investigate their electron field emission characteristics. Atomic force microscope measurements performed for the silicon nanodot samples having various process parameters, such as, deposition time and deposition pressure, revealed that the silicon nanodots with an average size of 20 nm, height of 5 nm, and density of $1.3\;{\times}\;10^{11}\;cm^{-2}$ were easily formed. Electron field emission measurements were performed with the silicon nanodot layer as the cathode electrode. The current-voltage curves revealed that the threshold electric field was as low as $8.3\;V/{\mu}m$ and the field enhancement factor reached as large as 698, which is compatible with the silicon cathode tips fabricated by other techniques. These electron field emission results point to the possibility of using a silicon-based light source for display devices.

Performance of Exercise Posture Correction System Based on Deep Learning (딥러닝 기반 운동 자세 교정 시스템의 성능)

  • Hwang, Byungsun;Kim, Jeongho;Lee, Ye-Ram;Kyeong, Chanuk;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.177-183
    • /
    • 2022
  • Recently, interesting of home training is getting bigger due to COVID-19. Accordingly, research on applying HAR(human activity recognition) technology to home training has been conducted. However, existing paper of HAR proposed static activity instead of dynamic activity. In this paper, the deep learning model where dynamic exercise posture can be analyzed and the accuracy of the user's exercise posture can be shown is proposed. Fitness images of AI-hub are analyzed by blaze pose. The experiment is compared with three types of deep learning model: RNN(recurrent neural network), LSTM(long short-term memory), CNN(convolution neural network). In simulation results, it was shown that the f1-score of RNN, LSTM and CNN is 0.49, 0.87 and 0.98, respectively. It was confirmed that CNN is more suitable for human activity recognition than other models from simulation results. More exercise postures can be analyzed using a variety learning data.

Development and Evaluation of a Thimble-Like Head Bolus Shield for Hemi-Body Electron Beam Irradiation Technique

  • Shin, Wook-Geun;Lee, Sung Young;Jin, Hyeongmin;Kim, Jeongho;Kang, Seonghee;Kim, Jung-in;Jung, Seongmoon
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.152-157
    • /
    • 2022
  • Background: The hemi-body electron beam irradiation (HBIe-) technique has been proposed for the treatment of mycosis fungoides. It spares healthy skin using an electron shield. However, shielding electrons is complicated owing to electron scattering effects. In this study, we developed a thimble-like head bolus shield that surrounds the patient's entire head to prevent irradiation of the head during HBIe-. Materials and Methods: The feasibility of a thimble-like head bolus shield was evaluated using a simplified Geant4 Monte Carlo (MC) simulation. Subsequently, the head bolus was manufactured using a three-dimensional (3D) printed mold and Ecoflex 00-30 silicone. The fabricated head bolus was experimentally validated by measuring the dose to the Rando phantom using a metal-oxide-semiconductor field-effect transistor (MOSFET) detector with clinical configuration of HBIe-. Results and Discussion: The thimble-like head bolus reduced the electron fluence by 2% compared with that without a shield in the MC simulations. In addition, an improvement in fluence degradation outside the head shield was observed. In the experimental validation using the inhouse-developed bolus shield, this head bolus reduced the electron dose to approximately 2.5% of the prescribed dose. Conclusion: A thimble-like head bolus shield for the HBIe- technique was developed and validated in this study. This bolus effectively spares healthy skin without underdosage in the region of the target skin in HBIe-.

Application study of silicon impression material for reducing metal artifacts: preliminary study for head and neck cancer radiotherapy

  • So Hyun Park;Jinhyun Choi;Byungdo Park;Jeongho Kim;Heesoo Lim;Dae-Hyun Kim
    • Journal of Medicine and Life Science
    • /
    • v.20 no.2
    • /
    • pp.83-88
    • /
    • 2023
  • Metal artifacts cause inaccuracies in target delineation, radiation treatment planning, and delivery when computed tomography images of a radiotherapy patient implanted with a high-density material in the body are acquired. In this study, we investigated the possibility of obtaining improved images in clinical trials through metal artifact reduction using silicon impression materials without the need for a specific metal artifact reduction algorithm. A silicon impression material exhibiting a constant Hounsfield unit (HU) value according to the mixing ratio of the catalysts and bases was selected. The material did not exhibit any change in weight or shape over time. For both the instances of inserting the metal material and applying the silicon impression material, the HU value and dose were compared with homogeneous cases filled with water-equivalent materials. When the silicon impression material was applied to the region where the high-density material was located, the HU value was within 5% and the dose was within 3% compared with those of the homogeneous cases. In this study, the silicon impression materials reduced metal artifacts. However, because the composition, shape, size, and location of high-density materials differ, further studies are required to consider these factors in clinical applications.

Studies on QTLs for Bakanae Disease Resistance with Populations Derived from Crosses between Korean japonica Rice Varieties

  • Dong-Kyung Yoon;Chaewon Lee;Kyeong-Seong Cheon;Yunji Shin;Hyoja Oh;Jeongho Baek;Song-Lim Kim;Young-Soon Cha;Kyung-Hwan Kim;Hyeonso Ji
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.201-201
    • /
    • 2022
  • Rice bakanae disease is a serious global threat in major rice-cultivating regions worldwide causing high yield loss. It is caused by the fungal pathogen Fusarium fujikuroi. Varying degree of resistance or susceptibility to bakanae disease had been reported among Korean japonica rice varieties. We developed a modified in vitro bakanae disease bioassay method and tested 31 Korean japonica rice varieties. Nampyeong and Samgwang varieties showed highest resistance while 14 varieties including Junam and Hopum were highly susceptible with 100% mortality rate. We carried out mapping QTLs for bakanae disease resistance with four F2:F3 populations derived from the crosses between Korean japonica rice varieties. The Kompetitive Allele-Specific PCR (KASP) markers developed in our laboratory based on the SNPs detected in Korean japonica rice varieties were used in genotyping F2 plants in the populations. We found four major QTLs on chromosome 1, 4, 6, and 9 with LOD scores of 21.4, 6.9, 6.0, and 60.3, respectively. In addition, we are doing map-based cloning of the QTLs on chromosome 1 and 9 which were found with Junam/Nampyeong F2:F3 population and Junam/Samgwang F2:F3 population, respectively. These QTLs will be very useful in developing bakanae disease resistant high quality rice varieties.

  • PDF

Implementation and Performance Analysis of Network Access Control Based on 802.1X for Effective Access Control on BYOD (효율적인 BYOD 접근통제를 위한 802.1X 네트워크 접근통제 구현과 성능 해석)

  • Lee, Min Choul;Kim, Jeongho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.271-282
    • /
    • 2015
  • In the business environment BYOD(Bring Your Own Device) is used and being expanded continuously. According to a survey conducted by Cisco in 2012 on 600 companies, 95% of them are already permitting the use of BYOD in their work environments so that productivity of their employees has improved as a result. Gartner predicted that the use of BYOD will be caused new security threat. They also suggested to introduce NAC(Network Access Control) to resolve this threat, to separate network zone based on importance of their business, to establish the policy to consider user authority and device type, and to enforce the policy. The purpose of this paper is to design and implement the NAC for granular access control based on IEEE(Institute of Electrical and Electronics Engineers) 802.1X and DHCP(Dynamic Host Configuration Protocol) fingerprinting, and to analyze the performance on BYOD environment.