The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.
Normalized Difference Vegetation Index (NDVI) is the most widely used remote sensing data in the agricultural field and is currently provided by most optical satellites. In particular, as high-resolution optical satellite images become available, the selection of optimal optical satellite images according to agricultural applications has become a very important issue. In this study, we aim to define the most optimal optical satellite image when monitoring NDVI in rice fields in Korea and derive the resolution-related requirements necessary for this. For this purpose, we compared and analyzed the spatial distribution and time series patterns of the Dangjin rice paddy in Korea from 2019 to 2022 using NDVI images from MOD13, Landsat-8, Sentinel-2A/B, and PlanetScope satellites, which are widely used around the world. Each data is provided with a spatial resolution of 3 m to 250 m and various periods, and the area of the spectral band used to calculate NDVI also has slight differences. As a result of the analysis, Landsat-8 showed the lowest NDVI value and had very low spatial variation. In comparison, the MOD13 NDVI image showed similar spatial distribution and time series patterns as the PlanetScope data but was affected by the area surrounding the rice field due to low spatial resolution. Sentinel-2A/B showed relatively low NDVI values due to the wide near-infrared band area, and this feature was especially noticeable in the early stages of growth. PlanetScope's NDVI provides detailed spatial variation and stable time series patterns, but considering its high purchase price, it is considered to be more useful in small field areas than in spatially uniform rice paddy. Accordingly, for rice field areas, 250 m MOD13 NDVI or 10 m Sentinel-2A/B are considered to be the most efficient, but high-resolution satellite images can be used to estimate detailed physical quantities of individual crops.
Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
Korean Journal of Remote Sensing
/
v.39
no.6_1
/
pp.1413-1425
/
2023
The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.
The HR policy in the public sector was closed and operated mainly on written tests, but in 2006, a new evaluation, promotion and education system based on competence was introduced in the promotion and selection system of civil servants. In particular, the seniority-oriented promotion system was evaluated based on competence by operating an Assessment Center related to promotion. Competency evaluation is known to be the most reliable and valid evaluation method among the evaluation methods used to date and is also known to have high predictive feasibility for performance. In 2001, 19 government standard competency models were designed. In 2006, the competency assessment was implemented with the implementation of the high-ranking civil service team system. In the public sector, the purpose of the competency evaluation is mainly to select third-grade civil servants, assign fourth-grade civil servants, and promotion fifth-grade civil servants. However, competency assessments in the public sector differ in terms of competency assessment objectives, assessment processes and competency assessment programmes compared to those in the private sector. For the purposes of competency assessment, the public sector is for the promotion of candidates, and the private sector focuses on career development and fostering. Therefore, it is not continuously developing capabilities than the private sector and is not used to enhance performance in performing its duties. In relation to evaluation items, the public sector generally operates a system that passes capacity assessment at 2.5 out of 5 for 6 competencies, lacks feedback on what competencies are lacking, and the private sector uses each individual's competency score. Regarding the selection and operation of evaluators, the public sector focuses on fairness in evaluation, and the private sector focuses on usability, which is inconsistent with the aspect of developing capabilities and utilizing human resources in the right place. Therefore, the public sector should also improve measures to identify outstanding people and motivate them through capacity evaluation and change the operation of the capacity evaluation system so that they can grow into better managers through accurate reports and individual feedback
The stress on finding a job is also increasing in a situation where the difficulty in finding a job is aggravating due to the COVID-19 pandemic. In this study, the major satisfaction of college students was subdivided into subject satisfaction and relationship satisfaction, and the relationship between these and job-seeking stress was investigated. In addition, We tried to find out whether there is a difference in the influence relationship between these majors according to their current major, that is, whether they majored in a science, engineering major or a social science major. The population for the study was the students currently enrolled in the 4th grade, and the research sample was obtained from students of H and N universities in the metropolitan area. A total of 220 people were analyzed, 110 people from science and engineering and 110 from social sciences. For analysis, SPSS 24.0 and Process Macro 5.0 were used. The empirical analysis results are as follows. First, subject satisfaction had a negative (-) effect on job-seeking stress. Second, relationship satisfaction also had a significant negative (-) effect on job-seeking stress. Third, there was a significant difference between science, engineering students and social science students in the effect of subject satisfaction on job-seking stress. Fourth, in the effect of relationship satisfaction on job-seeking stress, there was also a significant difference between science, engineering students and social science students. Therefore, the higher the satisfaction with the major you are majoring in, the lower the job-seeking stress, and the extent of this decrease is social science students were larger than science, engineering students. It is necessary to be cautious in generalizing the results of this study, which was made in the context of the COVID-19 pandemic. Based on the empirical analysis results, the academic and practical implications of this study are presented.
Kim, Jeong-hun;Song, Sae-hee;Ko, Lim-hwan;Nam, Hak-hyun;Jang, Jae-hyuck;Jung, Hoi-yun;Choi, Hyuck-jae
Journal of Venture Innovation
/
v.5
no.1
/
pp.91-106
/
2022
Cryptocurrency, stood out the sharp cost rising of Bitcoin has been spotlighted by means of the solution for stagflation because it is decentralized with an existing currency differently. Especially getting into 4th industrial revolution, technologies using block chain and internet of things have been used in the many fields, and the power of influence is also widespread. Nevertheless like a remark of Elon Musk of Tesla CEO, the problems of environmental contamination for cryptocurrency have been pointed out continuously and the most representative of them is an enormous electric usage as the use of fossil fuels. Also the amount generated of carbon dioxide result in the acceleration of global warming mainly based on the climate changes of earth if the existing mining method is continued. On the other hand, review researches have been conducted restrictively as the connection with environmental contamination as the mining of cryptocurrency. In this study, it intended to review problems for environmental contamination as the diversification of ecological system of cryptocurrency concretely. Upon investigation existing prior documents on the putting recent data first, the mining of cryptocurrency has affected on the environmental contamination conflicting with carbon neutrality as increasement of the electric usage and electronic wastes. And POS method without the mining process appeared, but it had a demerit collapsing a decentralization and then we met turning point on appearing various environmental-friendly cryptocurrency. Finally the appearance of cryptocurrency using new renewable energy acted on the opportunity of the usage maximization of energy storage apparatus and the birth of national government intervention. Based on these results, we mention clearly that hereafter cryptocurrency will regress if not go abreast the value of currency as well as environmental approach.
Shuai Wang;Jeong Hyeon Hong;Jong Kyun You;Yeon Ki Hong
Korean Chemical Engineering Research
/
v.61
no.4
/
pp.555-560
/
2023
Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine (MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved. In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However, as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA decreases, resulting in sharply decreasing of the overall mass transfer coefficient.
In this study, we propose a method to monitor the surface area of agricultural reservoirs in South Korea using Sentinel-1 synthetic aperture radar images and the deep learning model, Swin Transformer. Utilizing the Google Earth Engine platform, datasets from 2017 to 2021 were constructed for seven agricultural reservoirs, categorized into 700 K-ton, 900 K-ton, and 1.5 M-ton capacities. For four of the reservoirs, a total of 1,283 images were used for model training through shuffling and 5-fold cross-validation techniques. Upon evaluation, the Swin Transformer Large model, configured with a window size of 12, demonstrated superior semantic segmentation performance, showing an average accuracy of 99.54% and a mean intersection over union (mIoU) of 95.15% for all folds. When the best-performing model was applied to the datasets of the remaining three reservoirsfor validation, it achieved an accuracy of over 99% and mIoU of over 94% for all reservoirs. These results indicate that the Swin Transformer model can effectively monitor the surface area of agricultural reservoirs in South Korea.
Yungyo Im;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Youngmin Seo;Yangwon Lee
Korean Journal of Remote Sensing
/
v.39
no.5_3
/
pp.997-1008
/
2023
Ship detection at sea can be performed in various ways. In particular, satellites can provide wide-area surveillance, and Synthetic Aperture Radar (SAR) imagery can be utilized day and night and in all weather conditions. To propose an efficient ship detection method from SAR images, this study aimed to apply the You Only Look Once Version 5 (YOLOv5) model to Sentinel-1 images and to analyze the difference between individual vs. integrated models and the accuracy characteristics by polarization. YOLOv5s, which has fewer and lighter parameters, and YOLOv5x, which has more parameters but higher accuracy, were used for the performance tests (1) by dividing each polarization into HH, HV, VH, and VV, and (2) by using images from all polarizations. All four experiments showed very similar and high accuracy of 0.977 ≤ AP@0.5 ≤ 0.998. This result suggests that the polarization integration model using lightweight YOLO models can be the most effective in terms of real-time system deployment. 19,582 images were used in this experiment. However, if other SAR images,such as Capella and ICEYE, are included in addition to Sentinel-1 images, a more flexible and accurate model for ship detection can be built.
Hee Jin You;Eun Ji Kang;In Jeong Kang;Ji-Min Kim;Sung-Taeg Kang;Sungwoo Lee
KOREAN JOURNAL OF CROP SCIENCE
/
v.68
no.3
/
pp.134-146
/
2023
Phytophthora root rot (PRR) is a major soybean disease caused by an oomycete, Phytophthora sojae. PRR can be severe in poorly drained fields or wet soils. The disease management primarily relies on resistance genes called Rps (resistance to P. sojae). This study aimed to identify resistance loci associated with resistance to P. sojae isolate 40468 in Daepung × CheonAl recombinant inbred line (RIL) population. CheonAl is resistant to the isolate, while Daepung is generally susceptible. We genotyped the parents and RIL population via high-throughput single nucleotide polymorphism genotyping and constructed a set of genetic maps. The presence or absence of resistance to P. sojae was evaluated via hypocotyl inoculation technique, and phenotypic distribution fit to a ratio of 1:1 (R:S) (χ2 = 0.57, p = 0.75), indicating single gene mediated inheritance. Single-marker association and the linkage analysis identified a highly significant genomic region of 55.9~56.4 megabase pairs on chromosome 18 that explained ~98% of phenotypic variance. Many previous studies have reported several Rps genes in this region, and also it contains nine genes that are annotated to code leucine-rich repeat or serine/threonine kinase within the approximate 500 kilobase pairs interval based on the reference genome database. CheonAl is the first domestic soybean genotype characterized for resistance against P. sojae isolate 40468. Therefore, CheonAl could be a valuable genetic source for breeding resistance to P. sojae.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.