• Title/Summary/Keyword: Jeon-bi

Search Result 257, Processing Time 0.032 seconds

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

Micorstructure of Sn1.8Bi0.8Cu0.6In alloy during thermal aging (시료에 따른 Sn1.8Bi0.8Cu0.6In솔더의 미세구조)

  • Lee Jae Sik;Jeon Ju Seon;Park Jong U;Jeong Jae Pil
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.94-98
    • /
    • 2003
  • The microstructure of Sn1.8Bi0.8Cu0.6In alloys was evaluated at various aging time. The bumps of Sn1.8Bi0.8Cu0.6In alloys after reflowed at $250^{\circ}C$ were well-formed and had 260um height. The craters on the bumps, however, were observed. Intermetallic compounds formed on the interface between so]der and Cu/Ni UBM were consist of $(Cu,Ni)_6Sn_5$. As aging goes on up to 1000hours, the composition of Ni changed from $6.63\%$ at initial stage(as-reflowed) to $13.47\%$ at final stage(1000hours aging ). In addition, after 500hours aging, the floating of IMC to the solder was observed.

  • PDF

Epitaxial Growth of Bi2Se3 on a Metal Substrate

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.306-306
    • /
    • 2011
  • Three dimensional(3D) topological insulators(TIs) of Bi binary alloys are characterized by a bulk energy gap with strong spin-orbit coupling and metallic surface states protected by time-reversal symmetry. It was reported that film forms of such materials were advantageous over bulk forms due to less defect density and better crystallinity. So far, the films have been prepared on several substrates including semiconductors and graphene. But, there were no studies on metal substrates. For electronic transport experiments and device applications, it is necessary to know epitaxial relation between TIs and metal electrodes. In this study, Atomically flat films of Bi2Se3 were grown on a Au(111) metal substrate by in-situ molecular beam epitaxy. Using home-built scanning tunneling microscope, we observed hexagonal atomic structures which corresponded to the outmost selenium atomic layer of Bi2Se3. Triangular-shaped defects known as Selenium vacancy were also found.

  • PDF

Influence of Carbon Content on Superconductivity of $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ HTS

  • Jeon, Yong-Woo;Soh, Dea-Wha;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.276-279
    • /
    • 2002
  • $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ was prepared by the conventional method of solid state reaction and SHS method. The samples were annealed in different atmosphere in order to examine the influence of atmospheres on the carbon contents in the $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ compound. The lowest carbon content in $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ could be attended when the sample was annealed in $O_{2}$ at $800^{\circ}C$ for 100 hours. The $CO_{2}$ in air pollute the samples and increase the carbon content in the sintering process. The critical current density of the $Bi_{2}Sr_{2}CaCu_{2}O_{x}$ samples will decrease with the increasing carbon contents in the samples. The impurity carbon will deposit in the grain boundary, which makes critical current density lower.

  • PDF

The Effect of the Number of Nodes on the Exactness of Heat Loss in the Finite Difference Method (유한차분법에서 열손실 정확도에 미치는 Node 개수의 영향)

  • Jeon, Jeon-Woo;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.195-202
    • /
    • 1998
  • The effect of the number of nodes on the heat loss from a rectangular fin for a finite difference method is studied. There are two ways for selecting nodes for the upper half fin in this finite difference method. In the first place, all the ${\Delta}x$ are the same and all the ${\Delta}y$ are the same for the entire upper half fin. Incremental length of x (i.e. ${\Delta}x$) is divided by two near the fin tip while all the ${\Delta}y$ are the same for another way. The results show that 1) About 30 nodes are enough to obtain the satisfactory exact analysis (relative error < 5%) on the heat loss for a given range of Biot number in case of short fin (i.e. $L{\leq}2$). 2) Under usual circumstances (Bi<0.1), the relative error of heat loss between using 30 nodes and 90 nodes is within 4% for given range of non-dimensional fin length. 3) The relative error of the calculated heat loss (the number of node=90) as compared to the expected exact heat loss is less then 1.5% for Bi=0.1 and L=10 while that is over 13% for Bi=1.0 and L=10.

  • PDF

Bioelectrical Impedance Analysis at Popliteal Regions of Human Body using BIMS

  • Kim, J.H.;Kim, S.S.;Kim, S.H.;Baik, S.W.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Bioelectrical impedance (BI) at popliteal regions was measured using a bioelectrical impedance measurement system (BIMS), which employs the multi-frequency and the two-electrode method. Experiments were performed as follows. First, a constant AC current of $800{\mu}A$ was applied to the popliteal regions (left and right) and the BI was measured at eight different frequencies from 10 to 500 kHz. When the applied frequency greater than 50 kHz was applied to human's popliteal regions, the BI was decreased significantly. Logarithmic plot of impedance vs. frequency indicated two different mechanisms in the impedance phenomena before and after 50 kHz. Second, the relationship between resistance and reactance was obtained with respect to the applied frequency using BI (resistance and reactance) acquired from the popliteal regions. The phase angle (PA) was found to be strongly dependent on frequency. At 50 kHz, the PA at the right popliteal region was $7.8^{\circ}$ slightly larger than $7.6^{\circ}$ at the left popliteal region. Third, BI values of extracellular fluid (ECF) and intracellular fluid (ICF) were calculated using BIMS. At 10 kHz, the BI values of ECF at the left and right popliteal regions were $1664.14{\Omega}$ and $1614.08{\Omega}$, respectively. The BI values of ECF and ICF decreased sharply in the frequency range of 10 to 50 kHz, and gradually decreased up to 500 kHz. Logarithmic plot of BI vs. frequency shows that the BI of ICF decreased noticeably at high frequency above 300 kHz because of a large decrease in the capacitance of the cell membrane.

Mechanical Properties and Interfacial Reactions of Ru Nanoparticles Added Sn-58Bi Solder Joints (Ru Nanoparticle이 첨가된 Sn-58Bi 솔더의 기계적 신뢰성 및 계면반응에 관한 연구)

  • Kim, Byungwoo;Choi, Hyeokgi;Jeon, Hyewon;Lee, Doyeong;Sohn, Yoonchul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 2021
  • Sn-58Bi-xRu composite solders were prepared by adding Ru nanoparticles to Sn-58Bi, a typical low-temperature solder, and the interfacial reaction and solder joint reliability were analyzed by reacting with Cu/OSP and ENIG surface treated PCB boards. The Cu6Sn5 IMC formed by the reaction with Cu/OSP had little change in thickness depending on the Ru content, and ductile fracture occurred inside the solder during the high-speed shear test without any significant change even after 100 hr aging. In reaction with ENIG, the Ni3Sn4 IMC thickness tended to decrease as the Ru content increased, and ENIG-specific brittle fracture was found in some specimens. Since Ru element is not found near the interface, it is judged not to be significantly involved in the interfacial reaction, and it is analyzed that it mainly exists together with the Bi phase.

Fundamental Electro-Mechanical Characteristics of Ballooning-Resistant Bi-2223 HTS Tapes (벌루닝 손상에 강한 Bi-2223 테이프의 기본적인 전기-기계적 특성)

  • Dizon, John Ryan C;Shin, Hyung-Seop;Ha, Dong-Woo;Cho, Jeon-Wook;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.26-27
    • /
    • 2006
  • The fundamental mechanical characteristics under tensile and bending deformations of hermetically-sealed reinforced Bi-2223 tape and CTOP processed Bi-2223 tape were examined at 77K. Also, the Tensile strain dependence of the critical current, $I_c$, was obtained at 77K and self-field. The reinforced hermetic tape showed higher tensile strength and a better Tensile strain tolerance than the CTOP processed tape. For bending tests, a rho-shaped sample holder was used giving multiple bending strains. in increasing order. In the same case under bending deformation, the hermetic tape showed a higher bending strain tolerance than the CTOP processed tape. This higher strength of the hermetic tape can be attributed to the thick hardened copper reinforcement layer.

  • PDF