• Title/Summary/Keyword: Jensen functional equation

Search Result 62, Processing Time 0.023 seconds

STABILITY OF A JENSEN TYPE FUNCTIONAL EQUATION

  • Lee, Sang Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.73-83
    • /
    • 2001
  • In this paper, we solve a Jensen type functional equation and prove the stability of the Jensen type functional equation.

  • PDF

STABILITY OF PEXIDERIZED JENSEN AND JENSEN TYPE FUNCTIONAL EQUATIONS ON RESTRICTED DOMAINS

  • Choi, Chang-Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.801-813
    • /
    • 2019
  • In this paper, using the Baire category theorem we investigate the Hyers-Ulam stability problem of pexiderized Jensen functional equation $$2f(\frac{x+y}{2})-g(x)-h(y)=0$$ and pexiderized Jensen type functional equations $$f(x+y)+g(x-y)-2h(x)=0,\\f(x+y)-g(x-y)-2h(y)=0$$ on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.

ORTHOGONAL STABILITY OF AN EULER-LAGRANGE-JENSEN (a, b)-CUBIC FUNCTIONAL EQUATION

  • Pasupathi, Narasimman;Rassias, John Michael;Lee, Jung Rye;Shim, Eun Hwa
    • The Pure and Applied Mathematics
    • /
    • v.29 no.2
    • /
    • pp.189-199
    • /
    • 2022
  • In this paper, we introduce a new generalized (a, b)-cubic Euler-Lagrange-Jensen functional equation and obtain its general solution. Furthermore, we prove the Hyers-Ulam stability of the new generalized (a, b)-cubic Euler-Lagrange-Jensen functional equation in orthogonality normed spaces.

ON THE STABILITY OF A JENSEN TYPE FUNCTIONAL EQUATION ON GROUPS

  • FAIZIEV VALERH A.;SAHOO PRASANNA K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.757-776
    • /
    • 2005
  • In this paper we establish the stability of a Jensen type functional equation, namely f(xy) - f($xy^{-1}$) = 2f(y), on some classes of groups. We prove that any group A can be embedded into some group G such that the Jensen type functional equation is stable on G. We also prove that the Jensen type functional equation is stable on any metabelian group, GL(n, $\mathbb{C}$), SL(n, $\mathbb{C}$), and T(n, $\mathbb{C}$).

ON THE STABILITY OF A BI-JENSEN FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Lee, Yang-Hi;Oh, Jeong-Ha
    • The Pure and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.231-247
    • /
    • 2010
  • In this paper, we investigate the generalized Hyers-Ulam stability of a bi-Jensen functional equation $4f(\frac{x\;+\;y}{2},\;\frac{z\;+\;w}{2})$ = f(x, z) + f(x, w) + f(y, z) + f(y, w). Also, we establish improved results for the stability of a bi-Jensen equation on the punctured domain.