• 제목/요약/키워드: Jeju-Island power system

검색결과 109건 처리시간 0.03초

제주도 지역별 대용량 태양광발전소들의 여름 피크타임 기여도 연구 (Contribution of Large-Scale PV Plants in the Respective Region of the Jeju Island to Electric Power during Summer Peak Times)

  • ;고석영;사공준;권훈;이개명
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1873-1878
    • /
    • 2017
  • Both the introduction of the Renewable Energy Portfolio Standard (RPS) system into the electric energy market in 2012 and a decrease in the cost of constructing photovoltaic (PV) power plants have been increasing the number of MW PV plants in South Korea. Jeju Island is located at the center of three nations, South Korea, China and Japan, and its provincial government declared in 2012 that the island will be a clean region where greenhouse gases are not emitted by 2030. The Jeju provincial government is now doing its best to install PV plants and wind farms to realize a carbon-free island. In this study we investigated contribution of MW PV plants to the power of the electric grid during summer peak times on Jeju Island. Mt. Halla the highest mountain in South Korea, is located at the center of Jeju Island, and we divided the island into four regions and carried out analyses of a total of 24 PV plants. The average contribution of the PV plants in the respective region to electric power of Jeju Island during summer peak times was investigated and compared with those of the other regions. The best average contribution during the 12.5% maximum load period was obtained from the PV plants in the western region, and the value was 33% during 2015 and 2016.

제주지역 풍력발전단지의 BESS 적용효과 분석 (Analyzing effects of the BESS for wind farm in Jeju Island)

  • 이도헌;김일환;김호민;김승현
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.67-74
    • /
    • 2014
  • The fluctuation of the output power of wind farms will be able to cause the impact on the Jeju power system such as power quality and stability. To settle the matter, many researchers have proposed the use of the BESS(Battery Energy Storage System) in the wind farm. In this paper, The BESS is applied to each wind farms for mitigating the fluctuation of wind power output. The BESS is controlled for smoothing the output of wind farms. Two kinds of simulation will be carried out. First, the simulation results by using PSCAD/EMTDC simulation program are compared to the measured data from the real power grid in Jeju Island. The other is to analyze the output of wind farms when the BESS is applied to the simulation works. The simulation results will demonstrate the effectiveness of using BESS to stabilize for power grid in Jeju Island.

Evaluation of Optimal Transfer Capability in the Haenam-Jeju HVDC System Based on Cost Optimization

  • Son Hyun-Il;Kim Jin-O;Lee Hyo-Sang;Shin Dong-Joon
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권3호
    • /
    • pp.303-308
    • /
    • 2005
  • The restructure of the electrical power industry is accompanied by the extension of the electrical power exchange. One of the key pieces of information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). The traditional ATC deterministic approach is based on the severest case and it involves a complex procedure. Therefore, a novel approach for A TC calculation is proposed using cost optimization in this paper. The Jeju Island interconnected HVDC system has inland KEPCO (Korean Electric Power Corporation) systems, and its demand is increasing at the rate of about $\10[%]$ annually. To supply this increasing demand, the capability of the HVDC system must be enlarged. This paper proposes the optimal transfer capability of the HVDC system between Haenam in the inland and Jeju in Cheju Island through cost optimization. The cost optimization is based on generating cost in Jeju Island, transfer cost through Jeju-Haenam HVDC system and outage cost with one depth (N-1 contingency).

ESS 도입에 의한 우도 전력계통 운영방안 (An Operation Strategy of Udo Island Power System with the Introducing ESS)

  • 이도헌;김일환;김호민;오성보;이승민
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.57-63
    • /
    • 2015
  • This paper presents a solution by introducing energy storage system(ESS) to solve an annual blackout due to a typhoon or electrical failure in Udo Island. This island is now receiving electrical power through undersea cables from the Jeju Island. During blackout period, ESS will supply the electricity. And it is necessary to estimate the ESS capacity and control the transient state for the operation of stable power system. For the verification of proposed method, ESS capacities have been estimated according to base load and the minimum capacity of only home appliance in Udo Island. Also, in case of restoring from the fault, the algorithm for synchronization is proposed. Finally, the simulation results by using the PSCAD/EMTDC program will show the feasibility.

Frequency and Voltage Control Strategies of the Jeju Island Power System Based on MMC-HVDC Systems

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Song, Seung-Ho;Kim, Eel-Hwan
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.204-211
    • /
    • 2018
  • At present, one of two LCC-HVDC systems is responsible for controlling the grid frequency of the Jeju Island Power System (JIPS). The grid voltage is regulated by using STATCOMs. However, these two objectives can be achieved in one device that is called by a modular multilevel converter-high voltage direct current (MMC-HVDC) system. Therefore, this paper proposes frequency and voltage control strategies for the JIPS based on a MMC-HVDC system. In this case, the ancillary frequency and voltage controllers are implemented into the MMC-HVDC system. The modelling of the JIPS is done based on the parameters and measured data from the real JIPS. The simulation results obtained from the PSCAD/EMTDC simulation program are confirmed by comparing them to measured data from the real JIPS. Then, the effect of the MMC-HVDC system on the JIPS will be tested in many cases of operation when the JIPS operates with and without STATCOMs. The objective is to demonstrate the effectiveness of the proposed control strategy.

제주지역 전력공급과 효과적인 수요관리 방안 (A Study on the DSM Policy and Power Supply in Jeju Island)

  • 김창수;이창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.677-679
    • /
    • 2004
  • Although Jeju is an island, its electricity demand is 430MW. It indicates electricity demand and its growth rate in Jeju are higher than mainland average. The supply of electricity in Jeju consists of power plants within the island and connection of main system using cable line. The cost of supply is higher than mainland system. However the electricity rate and DSM incentives were treated equally with mainland. Therefore, Effective DSM promotion has not been carried out. This paper analyzes the policy alternatives of supply in Jeju and presents effective DSM countermeasures. Also it presents long-term policy on stabilization of supply and demand in Jeju.

  • PDF

가파도 마이크로그리드 신재생 에너지 전원 구성 방안 (Renewable Energy Configuration Plan of Micro Grid in Gapa Island)

  • 김동완;고지한;김승현;김호민;김일환
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.16-23
    • /
    • 2014
  • This paper presents a renewable energy configuration plan of Micro grid in Gapa Island. To analyze the characteristics of Micro grid, BESS (Battery Energy Storage System), PMSG (Permanent Magnet Synchronous Generator) and SCIG (Squirrel Cage Induction Generator) are first modelled. The PMSG and SCIG will operate with basis on the real power curve. when the total power demand is larger than the total power generation, the BESS will be operated and the SOC (State Of Charge) is reduced. If the value of SOC could drop down to limited value, the system may be broken because of the voltage drop of BESS. To solve this problem, a DG (Diesel Generator) is used to charge the BESS and keep the voltage value of BESS with in a allowance limit. This paper represents simulation result when PMSG, SCIG connected to the Micro grid installed in Gapa Island. The simulation is carry out by using PSCAD/EMTDC program with actual line constant and transformer parameter in Gapa Island.

제주 계통 신재생 발전 자원의 유효 공급능력 추정에 관한 연구 (A Study on Estimation of Capacity Value for Renewable Generation in Jeju-Island)

  • 위영민
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.469-473
    • /
    • 2019
  • 신재생 발전 자원의 경우 기존 설비와 다르게 기후 환경적 요소에 의해 공급능력이 결정되기 때문에 신재생 발전 자원의 공급능력 산정을 위해 실효공급용량 계산이 필요하다. 본 연구에서는 신재생 발전 자원의 공급능력 추정 방법에 대한 국내 외 사례조사와 국내 제주 계통의 데이터를 이용한 검증 내용을 담고 있다. 본 논문은 신재생 발전 비율이 높은 제주계통을 별도로 신재생 발전 자원의 실효 공급능력을 추정한 것으로 기존 국내 연구와 차별성이 있다.

제주지역 풍력발전 및 태양광발전의 전력계통 부하기여 분석 (Analysis of the Load Contribution of Wind Power and Photovoltaic Power to Power System in Jeju)

  • 명호산;김형철;강남호;김영환;김세호
    • 한국태양에너지학회 논문집
    • /
    • 제38권1호
    • /
    • pp.13-24
    • /
    • 2018
  • As part of the "Carbon free Island 2030" policy, the local government of Jeju Island is currently working to reduce carbon through renewable energy supply. However, renewable energy is difficult to predict due to intermittent characteristics. If the share of renewable energy increase, it is difficult to plan of supply of electricity to grid due to that characteristic of renewable. In this paper analyze the fluctuation rate and the capacity credit of wind power and PV to find out how much wind power and PV contribute to supply of electricity of power system in Jeju. As a result mean value of variation rate of wind power and PV is about 3%, 5% and capacity credit is about 10% and 2% respectively.

BESS에 의한 제주지역 풍력발전단지의 출력 안정화 (Power Stabilization of Wind Farms in Jeju Island with BESS)

  • 진경민;김동완;김일환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.134-135
    • /
    • 2012
  • This paper analyzes the characteristics of the power system of Jeju island in 2014, which has wind farms with the support of BESSs (Battery Energy Storage Systems). In the simulation, the electrical loads are predicted based on Korea Power Exchange's data and the wind turbines are considered with new installed plans within 2014. The situation that some wind farms are forced to disconnect from the grid instantaneously is considered. The BESSs are controlled by using SOC (State of Charge) and power smoothing control algorithm. The simulation results show the effectiveness of the proposed method.

  • PDF