• Title/Summary/Keyword: Japanese Brown Cattle

Search Result 9, Processing Time 0.018 seconds

Mitochondrial DNA Variation and Genetic Relationships in Japanese and Korean Cattle

  • Sasazaki, S.;Odahara, S.;Hiura, C.;Mukai, F.;Mannen, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1394-1398
    • /
    • 2006
  • The complete mtDNA D-loop regions of Japanese and Korean cattle were analyzed for their mtDNA variations and genetic relationships. Sequencing the 30 Higo substrain and 30 Tosa substrain of Japanese Brown, respectively 12 and 17 distinct Bos haplotypes were identified from 77 polymorphic nucleotide sites. In order to focus on the relationships among Japanese and Korean cattle, two types of phylogenetic tree were constructed using individual sequences; first, a neighbor-joining tree with all sequences and second, reduced median networks within each Japanese and Korean cattle group. The trees revealed that two major mtDNA haplotype groups, T3 and T4, were represented in Japanese and Korean cattle. The T4 haplogroup predominated in Japanese Black and Japanese Brown cattle (frequency of 43.3-66.7%), while the T3 haplogroup was predominant (83.3%) and T4 was represented only twice in the Korean cattle. The results suggested that the mitochondrial origins of Japanese Brown were Japanese ancient cattle as well as Japanese Black in despite of the considerable introgression of Korean and European cattle into Japanese Brown.

MILK PROTEIN POLYMORPHISMS AS GENETIC MARKER IN KOREAN NATIVE CATTLE

  • Chung, E.R.;Han, S.K.;Rhim, T.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.187-194
    • /
    • 1995
  • Genetic variants of ${\alpha}s_1$-casein, ${\beta}$-casein, ${\kappa}$-casein and ${\beta}$-lactoglobulin were investigated by starch urea gel electrophoresis in milk samples of 280 Korean native cattle. A new ${\beta}$-casein variant, designated ${\beta}$-casein $A^4$, was found in milk samples of Korean native cattle. It has a much slower electrophoretic mobility than the ${\beta}$-casein $A^3$ variant in acid gel. This new variant appeared together with either ${\beta}$-casein $A^1$, $A^2$ or B variant. Gene frequencies and genotypic frequencies were estimated. Gene frequencies of four milk protein loci in Korean native cattle were compared with those of imported cattle breeds raised in Korea and Japanese brown cattle. Gene frequencies were ${\alpha}s_1$-casein B .846, ${\alpha}s_1$-casein C .154; ${\beta}$-casein $A^1$ .216, ${\beta}$-casein $A^2$ .666, ${\beta}$-casein $A^4$ .048, ${\beta}$-casein B .070; ${\kappa}$-casein A .648, ${\kappa}$-casein B .352; ${\beta}$-lactoglobulin A .148, ${\beta}$-lactoglobulin B .852. The population was in Hardy-Weinberg equilibrium at all milk protein loci. Gene frequencies of Korean native cattle were very similar to those of Japanese brown cattle. Interestingly, a new variant, ${\beta}$-casein $A^4$, was found only in Korean native cattle and Japanese brown cattle. These results support the hypothesis that Korean native cattle were used in the development of the Japanese brown cattle.

Metabolomic profiling of postmortem aged muscle in Japanese Brown beef cattle revealed an interbreed difference from Japanese Black beef

  • Susumu Muroya;Riko Nomura;Hirotaka Nagai;Koichi Ojima;Kazutsugu Matsukawa
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.506-520
    • /
    • 2023
  • Objective: Japanese Brown (JBR) cattle, especially the Kochi (Tosa) pedigree (JBRT), is a local breed of moderately marbled beef. Despite the increasing demand, the interbreed differences in muscle metabolites from the highly marbled Japanese Black (JBL) beef remain poorly understood. We aimed to determine flavor-related metabolites and postmortem metabolisms characteristic to JBRT beef in comparison with JBL beef. Methods: Lean portions of the longissimus thoracis (loin) muscle from four JBRT cattle were collected at 0, 1, and 14 d postmortem. The muscle metabolomic profiles were analyzed using capillary electrophoresis time-of-flight mass spectrometry. The difference in post-mortem metabolisms and aged muscle metabolites were analyzed by statistical and bioinformatic analyses between JBRT (n = 12) and JBL cattle (n = 6). Results: A total of 240 metabolite annotations were obtained from the detected signals of the JBRT muscle samples. Principal component analysis separated the beef samples into three different aging point groups. According to metabolite set enrichment analysis, post-mortem metabolic changes were associated with the metabolism of pyrimidine, nicotinate and nicotinamide, purine, pyruvate, thiamine, amino sugar, and fatty acid; citric acid cycle; and pentose phosphate pathway as well as various amino acids and mitochondrial fatty acid metabolism. The aged JBRT beef showed higher ultimate pH and lower lactate content than aged JBL beef, suggesting the lower glycolytic activity in postmortem JBRT muscle. JBRT beef was distinguished from JBL beef by significantly different compounds, including choline, amino acids, uridine monophosphate, inosine 5'-monophosphate, fructose 1,6-diphosphate, and betaine, suggesting interbreed differences in the accumulation of nucleotide monophosphate, glutathione metabolism, and phospholipid metabolism. Conclusion: Glycolysis, purine metabolism, fatty acid catabolism, and protein degradation were the most common pathways in beef during postmortem aging. The differentially expressed metabolites and the relevant metabolisms in JBRT beef may contribute to the development of a characteristic flavor.

Genetic and Environmental Effects on Carcass Traits of Japanese Brown Cattle

  • Sri Rachma Aprilita Bugiwati, T.D.;Harada, H.;Fukuh, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Studies on the genetic and environmental effects on M.longissimus thoracis area (MLTA), fat thickness (SFT), rib thickness (RT) and marbling score (MS) were conducted on 21,086 steers and 7,151 heifers of Japanese Brown breed. All carcass traits were affected significantly (p<0.01) by sire, sex and initial year effects. Both of the MLTA and MS of steers were greater than heifers. Their differences were $1.4cm^2$ for MLTA and 0.05 for MS, respectively. Cattle started for fattening in winter tend to have higher of MLTA and MS and thicker of SFT and RT than those in other seasons. MLTA increase from 1987 to 1989 (about $1.9cm^2$) and decrease until 1994 (about $2.4cm^2$) and then increase again up to 1995 (about $1.5cm^2$). MS were nearly equal from 1987 to 1991 (about "1") and then decrease up to 1995 (about "1"). Heritability estimates of MLTA, RT, SFT and MS were ranged from 0.22 to 0.36. Genetic and phenotypic correlations of MLTA, RT, SFT and MS were positive and ranged from 0.05 to 0.62 and from 0.03 to 0.32 except SFT with MLTA was negative (-0.14 and -0.03).

Genetic Structure and Composition of Genetic Diversity in the Kouchi Sub-breed of the Japanese Brown Cattle Population

  • Honda, Takeshi;Fujii, Toshihide;Mukai, Fumio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1631-1635
    • /
    • 2007
  • Japanese Brown cattle, one of the four domestic beef breeds in Japan, are suffering from numerical reduction due to economic pressure from profitable breeds. In this study, all the reproductive cows in the Kouchi sub-breed of the Japanese Brown cattle that were alive in July 2005 were investigated by pedigree analysis to clarify genetic structure and composition of genetic variability. In addition, genetically important individuals for the maintenance of genetic variability of the sub-breed were also identified through the core set method. The number of cows analyzed was 1,349. Their pedigrees were traced back to ancestors born around 1940, and pedigree records of 13,157 animals were used for the analysis. Principal component analysis was performed on the relationship matrix of the cows, and their factor loadings were plotted on a three-dimensional diagram. According to their spatial positions in the diagram, all the cows were subdivided into five genetically distinctive subpopulations of 131 to 437 animals. Genetic diversity of the whole sub-breed, which is estimated to be 0.901, was decomposed into 0.856 and 0.045 of within-subpopulation and between-subpopulation components. Recalculation of genetic diversity after removal of one or several subpopulations from the five subpopulations suggested that three of them were genetically important for the maintenance of genetic variability of the sub-breed. Applying the core set method to all the cows, maximum attainable genetic diversity was estimated to be 0.949, and optimal genetic contributions assigned to each cow supported the previous results indicating relative importance of the three subpopulations as useful genetic materials.

Allele Frequency of the Bovine Y-chromosomal Microsatellite Locus in the Cattle Breeds (소 Y 염색체 특이 Microsatellite를 이용한 품종별 대립유전자 빈도 분석)

  • Yoon, D.;Park, E.W.;Cho, Y.M.;Cheong, I.C.;Im, S.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.429-436
    • /
    • 2007
  • The INRA124 is a bovine Y-chromosomal specific microsatellite locus that has been revealed a polymorphism. This locus has two alleles. The 132 bp allele is specific to cattle (humpless) of taurine origin and the 130 bp allele is specific to cattle (humped) of indicine origin. A total 822 males of 20 breeds or populations; North Eastern Asian breeds (Hanwoo, Korean Black cattle, Chik-so, CBK, Japanese Black cattle, Japanese Brown cattle, Yanbian cattle), Chinese yellow cattle (Luxi cattle, Nanyang cattle), European origin (Angus, Hereford, Charolais, Simmental, Brown swiss, Holstein, Limousin), African origin (Kavirondo zebu, White Fulani, crossbreed of N'Dama and Boran), Indian origin (Sahiwal) were characterized the distribution of alleles using INRA124 locus. Any individuals of European, Japanese origins and Hanwoo were not detected 130 bp allele, Bos indicus specific allele. Bos indicus breeds of Indian and African origins were not detected 132 bp allele, Bos taurus specific allele. CBK population that the crossbreed of Hanwoo, Brahman and Charolais showed the frequency of 0.19 in indicine specific allele. The breeds of Chinese mainland, Luxi and Nanyang cattle were detected 0.46 and 0.29 frequencies in indicine specific allele, respectively. These results suggest that Korean cattle, Hanwoo, had not been originated from a crossbred between Bos primigenius in Europe and Bos indicus in India.

The Japanese Wagyu beef industry: current situation and future prospects - A review

  • Gotoh, Takafumi;Nishimura, Takanori;Kuchida, Keigo;Mannen, Hideyuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.933-950
    • /
    • 2018
  • In Japan, Wagyu cattle include four Japanese breeds; Black, Brown, Shorthorn, and Polled. Today, the renowned brand name Wagyu includes not only cattle produced in Japan, but also cattle produced in countries such as Australia and the United States. In recent years, the intramuscular fat percentage in beef (longissimus muscle) from Japanese Black cattle has increased to be greater than 30%. The Japanese Black breed is genetically predisposed to producing carcass lipids containing higher concentrations of monounsaturated fatty acids than other breeds. However, there are numerous problems with the management of this breed including high production costs, disposal of untreated excrement, the requirement for imported feed, and food security risks resulting from various viral diseases introduced by imported feed. The feeding system needs to shift to one that is more efficient, and improves management for farmers, food security for consumers, and the health environment for residents of Japan. Currently, we are developing a metabolic programming and an information and communications technology (ICT, or Interne of Things) management system for Wagyu beef production as future systems. If successful, we will produce safe, high-quality Wagyu beef using domestic pasture resources while solving the problems of how to utilize increasing areas of abandoned agricultural land and to make use of the plant-based feed resources in Japan's mountainous areas.

Assessment of Genetic Diversity and Relationships Between Korean Cattle and Other Cattle Breeds by Microsatellite loci (Microsatellite loci 분석에 의한 한우와 타 품종간의 유전적 유연관계)

  • Yoon, D.H.;Park, E.W.;Lee, S.H.;Lee, H.K.;Oh, S.J.;Cheong, I.C.;Hong, K.C.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.341-354
    • /
    • 2005
  • For the genetic assessment of the cattle breeds including Hanwoo, eleven microsatellite markers on ten bovine autosomes were genetically characterized for 618 individuals of nineteen cattle breeds; North Eastern Asian breeds (Korean cattle, Korean Black cattle, Japanese Black cattle, Japanese Brown cattle, Yanbian cattle), Chinese yellow cattle (Luxi cattle, Nanyang cattle), European Bas taurus (Angus, Hereford, Charolais, Holstein, Limousin), African Bas taurus (N'Dama, Baoule), African Bas indicus (Kavirondo Zebu, White Fulani), Asian Bas indicus (Sahiwal, Nelore) and one Bali cattle, Bas banteng as an outbreed-reference population. Allele frequencies derived from the genotyping data were used in estimating heterozygosities, gene diversities and genetic distances. The microsatellite loci were highly polymorphic, with a total of 162 different alleles observed across all loci. Variability in allele numbers and frequencies was observed among the breeds. The average expected heterozygosity of North Eastern Asian breeds was higher than those of European and African taurines, but lower than those of Asian and African indicines. Genetic distances were estimated using Nei's DA genetic distance and the resultant DA matrix was used in the construction of the phylogenetic trees. The genetic distances between North Eastern Asian cattle breeds and Bas indicus were similar with those between European Bas taurus and Bas indicus, and African Bas taurus and Bas indicus, respectively. The clusters were clearly classified into North Eastern Asian, European and African taurines groups as well as different cluster with Chinese mainland breeds, firstly out-grouping with Bas indicus. These results suggest that Korean cattle, Hanwoo, had not been originated from a crossbred between Bas primigenius in Europe and Bas indicus in India and North Eastern Asian Bas taurus may be have separate domestication from European and African Bas taurus.

Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip

  • Sharma, Aditi;Lim, Dajeong;Chai, Han-Ha;Choi, Bong-Hwan;Cho, Yongmin
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.230-233
    • /
    • 2016
  • Linkage disequilibrium (LD) is the non-random association between the loci and it could give us a preliminary insight into the genetic history of the population. In the present study LD patterns and effective population size (Ne) of three Korean cattle breeds along with Chinese, Japanese and Mongolian cattle were compared using the bovine Illumina SNP50 panel. The effective population size (Ne) is the number of breeding individuals in a population and is particularly important as it determines the rate at which genetic variation is lost. The genotype data in our study comprised a total of 129 samples, varying from 4 to 39 samples. After quality control there were ~29,000 single nucleotide polymorphisms (SNPs) for which $r^2$ value was calculated. Average distance between SNP pairs was 1.14 Mb across all breeds. Average $r^2$ between adjacent SNP pairs ranged between was 0.1 for Yanbian to 0.3 for Qinchuan. Effective population size of the breeds based on $r^2$ varied from 16 in Hainan to 226 in Yanbian. Amongst the Korean native breeds effective population size of Brindle Hanwoo was the least with Ne = 59 and Brown Hanwoo was the highest with Ne = 83. The effective population size of the Korean cattle breeds has been decreasing alarmingly over the past generations. We suggest appropriate measures to be taken to prevent these local breeds in their native tracts.