• 제목/요약/키워드: Jak2

검색결과 160건 처리시간 0.032초

The Slough of Cicadidae Periostracum Ameliorated Lichenification by Inhibiting Interleukin (IL)-22/Janus Kinase (JAK) 1/Signal Transducer and Activator of Transcription (STAT) 3 Pathway in Atopic Dermatitis

  • Ganghye Park;Namgyu Kwon;Mi Hye Kim;Woong Mo Yang
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.859-876
    • /
    • 2023
  • It is known that animal-origin medicine could be one of effective treatment to remedy atopic dermatitis (AD) by controlling the cytokines. Cicadidae Periostracum (CP), the slough of Cryptotympana pustulata, has been frequently used for treating AD and skin affliction in traditional Korean Medicine. This study is aimed at investigating the ameliorating effects of CP on AD and its potential mechanism. The dinitrochlorobenzene sensitized mice were treated with CP for 2 weeks. The various biomarkers and the dermatitis scores presented that CP treatment can induce the visual and biological improvements of AD model. Pruritus, the most serious symptom of AD, which can cause repeated scratching behaviors and finally lead to lichenification, was reduced with CP treatment by regulating the inflammatory reactions. In addition, CP treatment diminished the number of mast cells that are known for causing inflammatory reactions. Moreover, it is proven that CP can decline secretion of interleukin-22, which means CP treatment has anti-inflammatory effects. CP treatment can correct the imbalance of helper T (Th)1 and Th2, downregulating thymic stromal lymphopoietin that leads to decrease of mRNA level of inflammatory cytokines. The crucial role of CP treatment is controlling of the Janus kinase 1/signal transducer and activator of transcription 3 pathway. In addition, CP treatment has the inhibitory effects on kallikrein related peptidase (KLK) 5 and KLK7. Taken together, CP treatment can ameliorate most symptoms and problems caused by AD disease, improving the AD patients' life quality.

Induction Patterns of Suppressor of Cytokine Signaling (SOCS) by Immune Elicitors in Anopheles sinensis

  • Noh Mi-Young;Jo Yong-Hun;Lee Yong-Seok;Kim Heung-Chul;Bang In-Seok;Chun Jae-Sun;Lee In-Hee;Seo Sook-Jae;Shin E-Hyun;Han Man-Deuk;Kim Ik-Soo;Han Yeon-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제12권2호
    • /
    • pp.57-61
    • /
    • 2006
  • Suppressor of cytokine signaling (SOCS) is known to be as a negative feedback regulator in Janus kinase signal transducer and activator of transcription signaling. Highly conserved SOCS box domain was cloned from a Korean malaria vector, Anopheles sinensis. Sequence analysis indicates that it has identity to Anopheles gambiae (96%), Aedes aegypti (94%), Drosophila melanogaster (78%), Mus musculus (72%) and Homo sapiens (72%), respectively. Tissue specificity RT-PCR demonstrated that the expression level of AsSOCS transcript was high at abdomen, midgut, and ovary, whereas developmental expression patterns showed that the level of AsSOCS was high at egg, early pupae, and adult female. On the other hand, RT-PCR analysis after bacterial challenge showed that SOCS mRNA was strongly induced in larvae. In addition, it was also induced by various immune elicitors such as lipoteicoic acid, CpG-DNA, and laminarin. It seems that AsSOCS, repressor of JAK-STAT pathway, is highly conserved in mosquito, and may play an important role in mosquito innate immune response.

Gene Expression Profiling of Liver and Mammary Tissues of Lactating Dairy Cows

  • Baik, M.;Etchebarne, B.E.;Bong, J.;VandeHaar, M.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권6호
    • /
    • pp.871-884
    • /
    • 2009
  • Gene expression profiling is a useful tool for identifying critical genes and pathways in metabolism. The objective of this study was to determine the major differences in the expression of genes associated with metabolism and metabolic regulation in liver and mammary tissues of lactating cows. We used the Michigan State University bovine metabolism (BMET) microarray; previously, we have designed a bovine metabolism-focused microarray containing known genes of metabolic interest using publicly available genomic internet database resources. This is a high-density array of 70mer oligonucleotides representing 2,349 bovine genes. The expression of 922 genes was different at p<0.05, and 398 genes (17%) were differentially expressed by two-fold or more with 222 higher in liver and 176 higher in mammary tissue. Gene ontology categories with a high percentage of genes more highly expressed in liver than mammary tissues included carbohydrate metabolism (glycolysis, glucoenogenesis, propanoate metabolism, butanoate metabolism, electron carrier and donor activity), lipid metabolism (fatty acid oxidation, chylomicron/lipid transport, bile acid metabolism, cholesterol metabolism, steroid metabolism, ketone body formation), and amino acid/nitrogen metabolism (amino acid biosynthetic process, amino acid catabolic process, urea cycle, and glutathione metabolic process). Categories with more genes highly expressed in mammary than liver tissue included amino acid and sugar transporters and MAPK, Wnt, and JAK-STAT signaling pathways. Real-time PCR analysis showed consistent results with those of microarray analysis for all 12 genes tested. In conclusion, microarray analyses clearly identified differential gene expression profiles between hepatic and mammary tissues that are consistent with the differences in metabolism of these two tissues. This study enables understanding of the molecular basis of metabolic adaptation of the liver and mammary gland during lactation in bovine species.

Enhanced biological effects of Phe140Asn, a novel human granulocyte colony-stimulating factor mutant, on HL60 cells

  • Chung, Hee-Kyoung;Kim, Sung-Woo;Byun, Sung-June;Ko, Eun-Mi;Chung, Hak-Jae;Woo, Jae-Seok;Yoo, Jae-Gyu;Lee, Hwi-Cheul;Yang, Byoung-Chul;Kwon, Moo-Sik;Park, Soo-Bong;Park, Jin-Ki;Kim, Kyung-Woon
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.686-691
    • /
    • 2011
  • Granulocyte colony-stimulating factor (G-CSF) is a cytokine secreted by stromal cells and plays a role in the differentiation of bone marrow stem cells and proliferation of neutrophils. Therefore, G-CSF is widely used to reduce the risk of serious infection in immunocompromised patients; however, its use in such patients is limited because of its non-persistent biological activity. We created an N-linked glycosylated form of this cytokine, hG-CSF (Phe140Asn), to assess its biological activity in the promyelocyte cell line HL60. Enhanced biological effects were identified by analyzing the JAK2/STAT3/survivin pathway in HL60 cells. In addition, mutant hG-CSF (Phe140Asn) was observed to have enhanced chemoattractant effects and improved differentiation efficiency in HL60 cells. These results suggest that the addition of N-linked glycosylation was successful in improving the biological activity of hG-CSF. Furthermore, the mutated product appears to be a feasible therapy for patients with neutropenia.

Improving Pneumovirus Isolation Using a Centrifugation and AZD1480 Combined Method

  • Lee, Hansaem;Woo, Hye-Min;Kim, Kisoon;Park, Sehee;Park, Man-Seong;Kim, Sung Soon;Kim, You-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.2006-2013
    • /
    • 2019
  • The isolation of respiratory viruses, especially from clinical specimens, often shows poor efficiency with classical cell culture methods. The lack of suitable methods to generate virus particles inhibits the development of diagnostic assays, treatments, and vaccines. We compared three inoculation methods, classical cell culture, the addition of a JAK2 inhibitor AZD1480, and centrifugation-enhanced inoculation (CEI), to replicate human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV). In addition, a combined method using AZD1480 treatment and CEI was used on throat swabs to verify that this method could increase virus isolation efficiency from human clinical specimens. Both CEI and AZD1480 treatment increased HRSV and HMPV genome replication. Also, the combined method using CEI and AZD1480 treatment enhanced virus proliferation synergistically. The combined method is particularly suited for the isolation of interferon-sensitive or slowly growing viruses from human clinical specimens.

식물체 및 퇴비 성분 분석을 위한 마이크로웨이브 분해법과 기존 습식 분해법의 비교 (Comparison of Microwave with Conventional Wet-Digestion Methods for the Element Analysis of Plant and Compost)

  • 남재작;조남준;정이근;이상학
    • 한국토양비료학회지
    • /
    • 제31권3호
    • /
    • pp.253-258
    • /
    • 1998
  • 마이크로파 시료 분해법이 식물체와 퇴비 중의 K, Ca, Mg, Cu, Zn, Mn등을 분석하는데 적합한가를 검정하기 위하여 기존의 습식분해법과 비교하였다. 분석시간은 기존의 습식분해법이 4~6시간 걸리던 것에 비하여 마이크로파 분해법에서는 1시간 이하로 단축할 수 있었으며, 두 분석법간의 각 성분별 분석값의 상관계수($R^2$)는 각각 K 0.98, Ca 0.97, Mg 0.91, Zn 0.94, Mn 0.99, Cu 0.99를 나타내었다. 칼륨과 칼슘의 경우 기존 습식분해법의 분석값이 더 높은 경향을 나타내었고 구리, 망간, 아연의 경우는 마이크로파 분해법의 분석값이 더 높은 경향을 나타내었으나 마그네슘의 경우 일정한 경향이 없었다. 그러나 칼슘의 경우를 제외한 그 외 성분들의 편기도(biases)는 10% 이내였다.

  • PDF

한국의 의료기관 외래진료 민감질환 입원율: 의료이용 효율성 지표로의 활용 가능성? (Hospital Admission Rates for Ambulatory Care Sensitive Conditions in South Korea: Could It Be Used as an Indicator for Measuring Efficiency of Healthcare Utilization?)

  • 정건작;김진경;강혜영;신의철
    • 보건행정학회지
    • /
    • 제26권1호
    • /
    • pp.4-11
    • /
    • 2016
  • Background: Hospital admissions for ambulatory care sensitive conditions (ACSCs), which are widely used as an indicator of poor access to primary care, can be used as an efficiency indicator of healthcare use in countries providing good access to health care. Korea, which has a national health insurance (NHI) system and a good supply of health care resources, is one such country. To quantify admission rates of ACSC and identify characteristics influencing variation in Korean health care institutions. Methods: By using NHI claims data, we computed the mean ACSC admission rate for all institutions with ACSC admissions. Results: The average ACSC admission rate for 4,461 institutions was 1.45%. Hospitals and clinics with inpatient beds showed larger variations in the ACSC admission rate (0%-87.9% and 0%-99.6%, respectively) and a higher coefficient of variation (7.96 and 2.29) than general/tertiary care hospitals (0%-19.1%, 0.85). The regression analysis results indicate that the ACSC admission rate was significantly higher for hospitals than for clinics (${\beta}=0.986$, p<0.05), and for private corporate institutions than public institutions (${\beta}=0.271$, p<0.05). Conclusion: Substantial variations in ACSC admission rates could suggest the potential problem of inefficient use of healthcare resources. Since hospitals and private corporate institutions tend to increase ACSC admission rates, future health policy should focus on these types of institutions.

네트워크 약리학을 통한 당뇨병성 신병증에서의 황기와 산수유의 활성 성분 및 잠재 타겟 예측 (Network Pharmacology: Prediction of Astragalus Membranaceus' and Cornus Officinalis' Active Ingredients and Potential Targets to Diabetic Nephropathy)

  • 이근현;이하린;정한솔;신상우
    • 동의생리병리학회지
    • /
    • 제31권6호
    • /
    • pp.313-327
    • /
    • 2017
  • The purpose of this study is to predict the effects of macroscopic and integrative therapies by finding active ingredients, potential targets of Astragalus membranaceus (Am) and Cornus officinalis (Co) for diabetic nephropathy. We have constructed network pharmacology-based systematic and network methodology by system biology, chemical structure, chemogenomics. We found several active ingredients of Astragalus membranaceus (Am) and Cornus officinalis (Co) that were speculated to bind to specific receptors which had been known to have a role in the progression of diabetic nephropathy. Four components of Am and eleven components of Co could bind to iNOS; two ingredients of Am and six ingredients of Co could docking to cGB-PDE; one component of Am and nine components of Co could bind to ACE; three ingredients of Co with neprilysin; three components of Co with ET-1 receptor; four ingredients of Am and fourteen ingredients of Co with mineralocorticoid receptor; one component of Am and seven components of Co with interstitial collagenase; one ingredient of Am and ten ingredients of Co with membrane primary amine oxidase; one component of Am and four components of Co with JAK2; two ingredients of Am and one ingredient of Co with MAPK 12; one component of Am and five components of Co could docking to TGF-beta receptor type-1. From this work we could speculate that the possible mechanisms of Am and Co for diabetic nephropathy are anti-inflammatory, antioxidant and antihypertensive effects.

Cross-talk between STAT6 and Ras/MAPK Pathway for the IL-4-mediated T Cell Survival

  • So, Eui-Young;Jang, Ji-Young;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.578-583
    • /
    • 2001
  • As a prototypic Thl vs Th2 cytokine, IFN-$\gamma$ and IL-4 activate distinct STAT proteins, STAT1 and STATE, respectively. In cytokine-producing Jurkat T cells, IL-4 is effectively rescued from cell death that is induced by dexamethasone, but IFN-$\gamma$ failed to do so. Since the Ras/MAPK pathway is known to play an important role in cytokine-induced cell survival, we investigated the mechanism of T cell survival through the analysis of functional cross-talk between Ras/MAPK and distinct STAT proteins that are activated by IL-4 and IFN-$\gamma$. Although IL-4 and IFN-$\gamma$ each induced the activation of STATE and STATI. in Jurkat T cells, respectively, only IL-4 was capable of inducing MAPK. Along with tyrosine kinase inhibitors, MEK/MAPK inhibitors also caused a significant suppression of the IL-4-induced STATE activity. This suggests a positive regulation of STATE by MAPK during IL-4 signal transduction. Furthermore, transfection studies with dominant active (da) vs dominant negative (dn) Ras revealed that daRas, but not dnRas, selectively up-regulated the expression and activity of STATE with a concomitant increase in MAPK activity. These results, therefore, suggest that there is a functional cross-talk between the Ras/MAPK and Jak/STAT6 pathways, which may have a role in the IL-4-induced T cell survival.

  • PDF

Obesity and Obese-related Chronic Low-grade Inflammation in Promotion of Colorectal Cancer Development

  • Pietrzyk, Lukasz;Torres, Anna;Maciejewski, Ryszard;Torres, Kamil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4161-4168
    • /
    • 2015
  • Colorectal cancer (CRC) is a worldwide health problem, being the third most commonly detected cancer in males and the second in females. Rising CRC incidence trends are mainly regarded as a part of the rapid 'Westernization' of life-style and are associated with calorically excessive high-fat/low-fibre diet, consumption of refined products, lack of physical activity, and obesity. Most recent epidemiological and clinical investigations have consistently evidenced a significant relationship between obesity-driven inflammation in particular steps of colorectal cancer development, including initiation, promotion, progression, and metastasis. Inflammation in obesity occurs by several mechanisms. Roles of imbalanced metabolism (MetS), distinct immune cells, cytokines, and other immune mediators have been suggested in the inflammatory processes. Critical mechanisms are accounted to proinflammatory cytokines (e.g. IL-1, IL-6, IL-8) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$). These molecules are secreted by macrophages and are considered as major agents in the transition between acute and chronic inflammation and inflammation-related CRC. The second factor promoting the CRC development in obese individuals is altered adipokine concentrations (leptin and adiponectin). The role of leptin and adiponectin in cancer cell proliferation, invasion, and metastasis is attributable to the activation of several signal transduction pathways (JAK/STAT, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), mTOR, and 5'AMPK signaling pathways) and multiple dysregulation (COX-2 downregulation, mRNA expression).