• 제목/요약/키워드: Jacket temperature

검색결과 98건 처리시간 0.029초

새롭게 개발된 겨울용 공기주입형 배플 패딩 재킷과 기존 방한 패딩 재킷들의 보온력 비교 평가 (Comparison and Evaluation of Clothing Insulation of Newly-Developed Air-Filled Baffle Jackets and Down Padded Jackets)

  • 권주연;김시연;백윤정;이주영
    • 한국의류산업학회지
    • /
    • 제23권2호
    • /
    • pp.261-272
    • /
    • 2021
  • The purpose of the present study was to evaluate the thermal insulation of air-filled winter jackets according to the amount of air-filler using a thermal manikin. The insulation of these jackets' was compared to a down padded jacket with an identical design and size. The amounts of air-filler were 100% (26,219 cm3), 70% (18,645 cm3), 50% (13,110 cm3), and 0% (0 cm3). The results showed that a clothing insulation (Icl) of 0%, 50%, 70%, and 100% air, and 100% down jackets was 0.208, 0.243, 0.207, 0.176, and 0.315 clo, respectively. In addition, the down jacket with waisttaped had a clothing insulation of 0.369 clo. However, the highest value of clothing insulation per clothing weight was the 50% air-filled jacket in all conditions. In terms of regional power consumption of the thermal manikin, the down jacket consumed less power for the shoulder and chest than the air-filled jackets. In conclusion, in order to maximize the thermal insulation of air-filled jackets, an optimal amount of air-filler, that is, an amount which does not compromise (break) the layer of inner air between the surface of manikin and the lining of the jacket, should be explored. Further studies on lining materials, end-closed design, and changes in thermal insulation under the conditions of strong wind or heavy snow are recommended.

선박용 디젤기관의 재킷 냉각청수시스템 성능 비교에 관한 연구 (A study on performance comparison of jacket cooling fresh water system for marine diesel engine)

  • 김덕경;이재현;조권회
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.8-14
    • /
    • 2017
  • 2008년 금융위기로 인하여 세계 경제가 어려워지면서 국제 유가 상승과 물동량이 감소하였으며, 대다수의 대형선사들은 차선책으로 대형선박 발주, 항로변경 및 운항방식 등을 개선하여 적자폭을 줄이게 되었다. 특히, 저속 운항 방식은 눈에 띄는 연료비 절감으로 많은 선주사들로부터 호응을 얻었으나 장기간 저속 운전시 고속 운전에 최적화된 주기관의 재킷 청수 냉각시스템은 정상 운전온도를 유지하지 못하고 하강하여 저온부식의 발생을 가속화 하게 되었다. 이로 인해 엔진의 부하가 낮을 경우 기존에 설치되는 재킷 냉각수 냉각기의 역할은 감소하고 조수기의 사용도 제한이 됨으로 재킷 청수 냉각 시스템의 개선이 필요하게 되었다. 본 논문에서는 선박의 저속운항에 따른 선박용 디젤 주기관의 냉각시스템 개선 사항을 검토하기 위하여, 파나막스급 산적화물선인 82k와 케이프급 산적화물선 180k 선박들을 대상으로 주기관 재킷 냉각수 냉각기를 설치 및 미설치하여 주기관 청수 냉각 시스템의 성능 결과를 검토 및 비교 분석 하여, 현 저속 운항선박에 탑재되는 주기관의 성능변화에 적절한 냉각시스템의 설계 개선방안을 제안하였다.

FSI 해석법을 이용한 고속 주축계의 열특성 해석 (Thermal Characteristics Analysis of a High Speed Spindle System by Using FSI Method)

  • 김수태;이석준;최영휴
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.83-88
    • /
    • 2014
  • FSI (Fluid Structure Interaction) method, in this study, has been applied to analyzing thermal characteristics of a high speed machine tool spindle system. The spindle is composed of angular contact ceramic ball bearings, a high speed built-in motor, a cooling jacket, and so on. The cooling jacket has three inlets and outlets. Using the FSI method, temperature distributions and thermal displacements of the spindle system were computed considering the heating of the front and rear bearings and the built-in motor. The results computed using the FSI method were compared with those determined by experiment and using the conventional numerical approach. The results determined using the FSI method were similar to those from the conventional numerical approach but showed better agreement with the experimental results. Therefore, it is concluded that the FSI method is useful for analyzing the thermal characteristics of high speed spindles and can be applied to the design of high speed spindles.

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

태양열 시스템에 적용된 나선재킷형 축열조의 CFD 해석 (CFD Analysis for Spiral-Jacketed Thermal Storage Tank in Solar Heating Systems)

  • 남진현;김민철;김찬중;홍희기
    • 설비공학논문집
    • /
    • 제20권10호
    • /
    • pp.645-653
    • /
    • 2008
  • Spiral-jacketed thermal storage tanks can greatly simplify solar heating systems while maintaining the thermal performance at a similar level as conventional systems with an external heat exchanger. Proper design of the spiral-jacket flow path is essential to make the most of solar energy, and thus to maximize the thermal performance. In the present work, computational fluid dynamics (CFD) analysis was carried out for a spiral-jacketed storage tank installed in a solar heating demonstration system. The results of the CFD analysis showed a good agreement with experimentally determined thermal performance indices such as the acquired heat, collector efficiency, and mixed temperature in the storage tank. This verified CFD modelling approach can be a useful design tool in optimizing the shape of spiral-jacket flow path and the flow rate of circulating fluid for better performance.

Electromechanical impedance-based long-term SHM for jacket-type tidal current power plant structure

  • Min, Jiyoung;Yi, Jin-Hak;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.283-297
    • /
    • 2015
  • Jacket-type offshore structures are always exposed to severe environmental conditions such as salt, high speed of current, wave, and wind compared with other onshore structures. In spite of the importance of maintaining the structural integrity for an offshore structure, there are few cases to apply a structural health monitoring (SHM) system in practice. The impedance-based SHM is a kind of local SHM techniques and to date, numerous techniques and algorithms have been proposed for local SHM of real-scale structures. However, it still requires a significant challenge for practical applications to compensate unknown environmental effects and to extract only damage features from impedance signals. In this study, the impedance-based SHM was carried out on a 1/20-scaled model of an Uldolmok current power plant structure in Korea under changes in temperature and transverse loadings. Principal component analysis (PCA)-based approach was applied with a conventional damage index to eliminate environmental changes by removing principal components sensitive to them. Experimental results showed that the proposed approach is an effective tool for long-term SHM under significant environmental changes.

공작기계용 고속주축계의 공기냉각특성에 관한 연구 (Air Cooling Characteristics of a High Speed Spindle System for Machine Tools)

  • 최대봉;김석일;송지복
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.123-128
    • /
    • 1994
  • A high speed spindle system for machine tools can be used to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials, and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices, cooling jacket and so on. And an air cooling experiment for evaluating the performance of the spindle system is carried out. Especially, in ofder to establish the air cooling conditions related to the development of a high speed spindle system, the effects of cooling air pressure, oil supply rate, air supply rate and rotational spindle speed are studied and discussed on the bearing temperature rise and frictional torque. Also the effects of cooling air pressure, rotational spindle speed and spindle system structure is investigated on the bearing temperature distribution. The experiment on the test model reveals the usefulness of the air cooling method.

  • PDF

고주파 모터 내장형 주축의 냉각에 따른 열특성 해석 (Analysis oil the Thermal Characteristics of the Spindle with High Frequency Motor according to the Cooling Methods)

  • 김수태;최대봉;조환석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.969-974
    • /
    • 2002
  • Thermal characteristics according to the cooling methods are studied for the three type spindles with high frequency motor. For the analysis, three dimensional mode]s are built considering heat transfer characteristics such as natural and force convection coefficients. Unsteady-state temperature distributions and thermal deformations according to the cooling conditions are analyzed by using the finite element method.

  • PDF

저임피던스 케이블의 허용전류에 대한 연구 (A Study on Permissible Current of Low Impedance Cable)

  • 김동식;박복기;이종찬;이관우;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.513-515
    • /
    • 1999
  • In this study, we evaluated the relation of the test and theory of low impedance cable As the result We could obtained the result in accordance the test with theory in 85 ~ 95% tolerance . Test method measured the relation of the current and temperature of cable jacket in using CT to put in 3 phase AC current simultationiously. The current and temperature of it was calculated in according to JCS- l68D

  • PDF