• 제목/요약/키워드: JSRT

검색결과 5건 처리시간 0.024초

일본의 비탈면 녹화공법 발전과정과 전망 (A Study on the Historical Changes and Prospect of Slope Revegetation Technology in Japan)

  • 고정현;요시다 히로시;김남춘
    • 한국환경복원기술학회지
    • /
    • 제9권1호
    • /
    • pp.112-120
    • /
    • 2006
  • It is possible to divide the historical changes of slope revegetation in Japan into five periods as follows; 1) The early period after creation(1927-1948), 2) The spreading period of modern revegetation work with manpower(1947-1958), 3) The spreading period of rapid revegetation technique using exotic grasses with machineries(1959-1985${\dots}$), 4) The spreading period of rapid reforestation technique by fast growing species mainly using leguminous shrub species(1986-1995${\dots}$), 5) The developing period of nature restoration technique using endemic arborous species(1996-). Recently main purpose of slope revegetation has been developing from the erosion protection to the nature restoration in the current of the 5th period. It is said that the role of the Japanese Society of Revegetation Technology(JSRT) is critical to the history of slope revegetation in Japan. 'The tentative guidelines of slope nature restoration' was announced by JSRT in 2004. In the guidelines, it was proposed that the planning techniques of using suitable seeds/plants based on the preservation level at the each construction sites. Moreover, the use of soil seed bank is the new and important study theme in the field of nature restoration. Consequently, at present the importance of advanced monitoring methods for vegetation maintenance and plant sociologic survey to evaluate the plant succession is increasing. Finally, some critical concepts are necessary to develop the field of restoration in Korea as follows; 1) monitoring of constructed sites, 2) ensuring of biodiversity, 3) recognition of slow revegetation and mosaic arrangement in revegetation, 4) reuse and recycle on the construction sites, and 5) promotion of specialist.

단순흉부영상의 Template-Matching을 이용한 폐 결절 자동 추출 (Automated Detection of Pulmonary Nodules in Chest Radiography Using Template Matching)

  • 류지연;이경일;오명진;장정란;이배호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.335-338
    • /
    • 2002
  • This paper proposes some technical approaches for automatic detection of pulmonary nodules in chest X-ray images. We applied threshold technique for the lung field segmentation and extended the lung field by using morphological methods. A template matching technique was employed for automatic detecting nodules in lung area. Genetic algorithm(GA) was used in template matching(TM) to select a matched image from various reference patterns(simulated typical nodules). We eliminated the false-positive candidates by using histograms and contrasts. We used standard databases published by Japanese Society of Radiological Technology (JSRT) for correct results. Also we employ two-dimensional Gaussian distribution for some reference images because the shadow of lung nodules in radiogram generally shows the distributions. Nodules of about 89% were correctly detected by our scheme. The simulation results show that it is an effective method to indicate lesions on chest radiograms.

  • PDF

영역별 화소값 분석을 통한 흉부 X선 오픈 데이터셋 품질 평가 (Quality Evaluation of Chest X-ray Open Dataset through Pixel Value Analysis by Region)

  • 최현진;배수빈;선주성;이정원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.614-617
    • /
    • 2022
  • 인공지능의 발전으로 의료영상 분야에서 딥러닝 기반 질병 진단 연구가 활발하다. 그러나 모델 개발 시 학습 데이터의 개수와 품질은 매우 중요한데, 의료 분야 특성상 접근 가능한 데이터셋이 적으며 오픈 데이터셋은 서로 다른 기관에서 배포되거나 웹상에서 수집된 것으로 진단에 적합한 품질을 기대하기 어렵다. 또한, 기존 연구는 데이터셋이 학습에 적합한지에 대한 품질검증 없이 사용한다. 따라서 본 논문에서는 임상에서 사용하는 화질 평가 요소에 근거를 두고 영역별 화소값 분석을 통한 흉부 X선 영상 품질 평가 기법을 제안한다. 오픈 데이터셋 JSRT, Chest14와 국내 A 병원 데이터셋 AUH에 제안한 기법을 적용한 결과 민감도 91.5%, 특이도 96.1%의 우수한 성능을 확인하였다.

X-ray Image Segmentation using Multi-task Learning

  • Park, Sejin;Jeong, Woojin;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1104-1120
    • /
    • 2020
  • The chest X-rays are a common way to diagnose lung cancer or pneumonia. In particular, the finding of a lung nodule is the most important problem in the early detection of lung cancer. Recently, a lot of automatic diagnosis algorithms have been studied to find the lung nodules missed by doctors. The algorithms are typically based on segmentation network like U-Net. However, the occurrence of false positives that similar to lung nodules present outside the lungs can severely degrade performance. In this study, we propose a multi-task learning method that simultaneously learns the lung region and nodule-labeled data based on the prior knowledge that lung nodules exist only in the lung. The proposed method significantly reduces false positives outside the lung and improves the recognition rate of lung nodules to 83.8 F1 score compared to 66.6 F1 score of single task learning with U-net model. The experimental results on the JSRT public dataset demonstrate the effectiveness of the proposed method compared with other baseline methods.

3D 히스토그램 기반 영역분할을 이용한 흉부 X선 영상 품질 평가 (Quality Evaluation of Chest X-ray Images using Region Segmentation based on 3D Histogram)

  • 최현진;배수빈;박예슬;이정원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.903-906
    • /
    • 2021
  • 인공지능 기술 발전으로, 의료영상 분야에서도 딥러닝 기반 질병 진단 연구가 활발히 진행되고 있다. 딥러닝 모델 개발 시, 학습 데이터 품질은 모델의 성능과 신뢰성에 매우 큰 영향을 미친다. 그러나 의료 분야의 경우 도메인 지식에 대한 진입 장벽이 높아 개발자가 학습에 사용되는 의료영상 데이터의 품질을 평가하기 어렵다. 이로 인해, 많은 의료영상 분야에서는 각 분야의 특성(질병의 종류, 관찰 아나토미 등)에 따른 영상 품질 평가 방법을 제시해왔다. 그러나 기존의 방법은 특정 질병에 초점이 맞춰져, 일반화된 품질 평가 기준을 제시하고 있지 않다. 따라서 본 논문에서는 대부분의 흉부 질환을 진단하기 위한 흉부 X선 영상의 품질을 평가할 수 있는 기준을 제안한다. 우선, 흉부 X선 영상을 대상으로 관찰된 영역인 심장, 횡격막, 견갑골, 폐 등을 분할하여, 3D 히스토그램을 기반으로 각 영역별 통계적인 정밀 품질 평가 기준을 제안한다. 본 연구에서는 JSRT, Chest 14의 오픈 데이터셋을 활용하여 적용 실험을 수행하였으며, 민감도는 97.6%, 특이도는 92.8%의 우수한 성능을 확인하였다.