• Title/Summary/Keyword: JKMS

Search Result 2,549, Processing Time 0.019 seconds

Exchange-coupling Interaction and Magnetic Properties of BaFe12O19/Ni0.5Zn0.5Fe2O4 Nanocomposite Ferrite (BaFe12O19/Ni0.5Zn0.5Fe2O4 나노복합체 Ferrite의 Exchange-coupling 상호 작용과 자기 특성)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.81-85
    • /
    • 2014
  • Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanocomposite ferrite were prepared by sol-gel combustion method. Nanocomposite was calcined at temperature range of $600{\sim}900^{\circ}C$ for 1 h. According to the diffraction patterns, hard/soft nanocomposite was indicated to the coexistence of the magnetoplumbite structural $BaFe_{12}O_{19}$ and spinel $Ni_{0.5}Zn_{0.5}Fe_2O_4$ and agree with the standard data (JCPDS 10-0325). The particle size of nanocomposite turn out to be less than 90 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite ($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that for the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite. $(BH)_{max}$ is increased, generally.

Major B-H Loop Measurement of Toroidal Shape Magnetic Powder Core (토로이드형 분말코어의 Major B-H Loop 측정)

  • Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.76-80
    • /
    • 2014
  • Toroidal cores made of metallic powder requires large magnetic field strength up to few decade kA/m to obtain major hysteresis loop. To overcome thermal heat generation problem from large exciting current during measurement, we have employed a real time hysteresis loop tracer which can digitize and calculate B-H signals in personal computer as real time. For example, when we magnetize specimen at 10 Hz frequency, we could display hysteresis loops 10 times per second. Using the real time hysteresis loop tracer, we could measure major hysteresis loop of toroidal shape metallic powder core at maximum flux density or maximum magnetic field strength to be measured within 5 second not to significant increasement of specimen temperature due to the heat dissipation from coil windings. For the constructed hysteresis loop tracer, we could measure hysteresis loop at magnetic field strength higher than 50 kA/m for the toroidal shape specimen.

Energy Level Calculation of Fe3+ Paramagnetic Impurity Ion in a LiTaO3 Single Crystal (LiTaO3 단결정 내의 Fe3+ 상자성 불순물 이온에 대한 에너지 준위 계산)

  • Yeom, Tae Ho;Yoon, Dal Hoo;Lee, Soo Hyung
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.71-75
    • /
    • 2014
  • Ground state energy levels of the $Fe^{3+}$ paramagnetic impurity ion in stoichiometric $LiTaO_3$ and in congruent $LiTaO_3$ single crystals were calculated with electron paramagnetic resonance constants. Energy levels between six energy levels were obtained with spectroscopic splitting parameter g and zero field splitting constant D for $Fe^{3+}$ ion. The energy diagrams of $Fe^{3+}$ ion were different from different magnetic field directions ([100], [001], [111]) when magnetic field increases. The calculated ZFS energies of $Fe^{3+}$ ion in stoichiometric and congruent $LiTaO_3$ single crystals for ${\mid}{\pm}5/2$ > ${\leftrightarrow}{\mid}{\pm}3/2$ > and ${\mid}{\pm}3/2$ > ${\leftrightarrow}{\mid}{\pm}1/2$ > transitions were 12.300 GHz and 6.150 GHz, and 59.358 GHz and 29.679 GHz, respectively. It turns out that energy levels of $Fe^{3+}$ paramagnetic impurity in $LiTaO_3$ crystal are different from different crystal growing condition.

The Magnetic Properties with the Variation of Sintering Temperature and Microwave Absorbing Characteristics of NiCoZn Ferrite Composite Prepared by Co-precipitation Method (공침법으로 제조한 NiCoZn Ferrite의 조성 및 소결온도에 따른 자기적 특성 및 전파흡수특성)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2008
  • In this study, NiCoZn ferrites with the variation of sintering temperature and chemical composition were prepared by the coprecipitation. Microstructures Crystal structure of NiCoZn ferrites were analyzed by XRD and their electric magnetic characteristics were analyzed by LCR meter and their morphology observed by SEM. We identified that these powders have a typical NiCoZn spinel structure and nanoparticles average size of 40 nm. The impurity, the initial permeability and the Q factor value are the lowest of sintered NiCoZn ferrite at $1250^{\circ}C$. Also, we measured S-parameter for $(Ni_{0.4}Co_{0.1}Zn_{0.5})Fe_2O_4$ which showed a maximum reflection loss of -3.1 dB at 6 GHz for the 2 mm thick sample. From this result, we found that the NiCoZn ferrite can be used in ferrite microwave-absorbing application at a higher frequency region (> 6 GHz).

Dependence of Coercivity and Exchange Bias as Surface Magnetic Anisotropy in [Pd/Ferromagnet] Multilayer with Out-of-plane Magnetic Anisotropy (수직자기이방성을 갖는 [Pd/Ferromagnet] 다층막에서 표면자기이방성에 따른 교환력과 보자력의 의존성)

  • Heo, Jang;Kim, Hyun-Shin;Choi, Jin-Hyup;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.98-102
    • /
    • 2008
  • Dependence of the exchange bias and coercivity as surface magnetic anisotropy and ferromagnet materials for $[Pd/Co]_N$ and $[Pd/Co,(CoFe)]_N$/FeMn multilayers with perpendicular magnetic anisotropy were investigated. The coercivity was proportionally increased to 670 Oe by increasing stack number N in Ta(2.1 nm)/[Pd(3.1/N)/$Co(1.2/N)]_N$/Ta(2.1) multilayers with perpendicular magnetic anisotropy. Also, the coercivity in exchange biased multilayer was tend to increased by increasing stack number N. But coercivity of each materials have been in order of Co (600 Oe), $Co_5Fe_5$ (520 Oe) and $Co_8Fe_2$ (320 Oe) as function of the ferromagnet materials. The other side, exchange force of each materials is 300 Oe when the reiteration layer number N is 3. In over number of reiteration layer 3, they maintained coercivity between 200 Oe and 300 Oe.

Spin-orbit Coupling Effect on the Structural Optimization: Bismuth Telluride in First-principles (스핀-궤도 각운동량 상호작용의 구조 최적화에 대한 효과: 비스무스 텔루라이드의 제일원리 계산의 경우)

  • Tran, Van Quang;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Spin-orbit coupling (SOC) effect is known to be the physical origin for various exotic magnetic phenomena in the low-dimensional systems. Recently, SOC also draws lots of attention in the study on magnetically doped thermoelectric alloys to determine their properties as the thermoelectric application as well as the topological insulator via the exact electronic structures determination near the Fermi level. In this research, aiming to investigate the spin-orbit coupling effect on the structural properties such as the lattice constants and the bulk modulus of the most widely investigated thermoelectric host material, $Bi_2Te_3$, we carried out the first-principles electronic structure calculation using the all-electron FLAPW (full-potential linearized augmented plane-wave) method. Employing both the local density approximation (LDA) and the generalized gradient approximation (GGA), the structural optimization is achieved by varying the in-plane lattice constant fixing the perpendicular lattice constant and vice versa, to find that the SOC effect increases the equilibrium lattices slightly in both directions while it markedly reduces the bulk modulus value implying the strong orientational dependence, which are attributed to the material's intrinsic structural anisotropy.

Fabrication and Magnetic Properties of Ba Ferrite Powders by Sol-gel Process (졸겔법에 의한 Ba-ferrite분말의 제조 및 자기적 특성 연구)

  • An, Sung-Yong;Lee, Sang-Won;Choi, Dong-Hyeok;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • M-type hexagonal BaFe$\sub$12/O$\sub$19/ ferrite powder was prepared by sol-gel process. The M-type hexagonal structure with ${\alpha}$ = 5.882 and c = 23.215 ${\AA}$ and its Curie temperature T$\sub$C/ was determined 780${\pm}$3 K. The isomer shifts of ,4f$_2$, 2a. 4f$_1$, 12k, and 2b were indicated 0.26, 0.24, 0.15, 0.25, and 0.24 mm/s, therefore, the valence states of the Fe ions were ferric (Fe$\^$3+/). By the law of approach to saturation (LAS), the effective anisotropy field H$\sub$A/ and crystalline anisotropy constant K$_1$ were estimated. The value of K$_1$ and H$\sub$A/ were K$_1$ = 2.5${\times}$10$\^6/erg/cm^3$ and H$\sub$A/ = 14 kOe, respectively.

Electron Magnetic Resonance Study of Paramagnetic Impurities in LiTaO3 and LiMbO3 Single Crystals (LiTaO3 및 LiMbO3 단결정 내의 상자성 불순물에 관한 전자 자기공명 연구)

  • Yeom, Tae-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.204-210
    • /
    • 2003
  • Electron magnetic resonance (EMR) of paramagnetic Cr$^{3+}$, Mn$^{2+}$, and Fe$^{3+}$ impurity ions in ferroelectric LiNbO$_3$ and LiTaO$_3$ single crystals has been studied. The actual sites location of paramagnetic impurity ions in the crystals was suggested from the experimental results and zero field splitting parameters calculated by superposition model. It turns out that Cr$^{3+}$ ions in LiNbO$_3$ crystal have two resonance centers and enter both the Li$^{+}$ and Nb$^{5+}$ ions. Mn$^{2+}$ and Fe$^{3+}$ impurity ions in LiNbO$_3$ substitute for Nb$^{5+}$ ions. However, both Cr$^{3+}$ and Fe$^{3+}$ ions in LiTaO$_3$ crystal reside at Li$^{+}$ ions.$ +/ ions.+/ ions.

Effects of Residual Magnetization on MEL Non-destructive Inspection of Gas Pipeline (가스관의 자속누설탐사에서 잔류자화의 영향에 관한 연구)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.143-148
    • /
    • 2004
  • Effects of residual flux density M$_{res}$ and number of inspection on the detection voltage and flux density B of the gas pipeline were investigated in MFL inspection, which is widely used for the non-destructive inspection in a gas pipeline. A simulation equipment composed of the magnetizer and iron ring attached on an aluminum disc was constructed instead of a huge gas pipeline facility. With this system. the iron ring could be perfectly demagnetized and signals from the bolt screw stuck on the disc could be clearly detected so that the effects of M$_{res}$S and the inspection number on the detection voltage and B of iron ring were effectively investigated. With increasing the number of inspection, M$_{res}$, B of the iron ring and the detection voltage decreased and then kept at constant values while final M$_{res}$ increased with increasing initial M$_{res}$. If inspection condition were kept unchanged, the detection voltage was proportional to the last M$_{res}$ of the iron ring instead of B. This was probably due to magnetic hysteresis of the iron ring inherited from magnetic domain so that consideration on the magnetic hysteresis was inevitable in the analysis of MFL signal from defects of a gas pipeline. A new inspection scheme using the magnetizer with reversed magnetization in the subsequent inspection was proposed from the result that a high detection voltage could be obtained in the first inspection of gas pipeline with positive M$_{res}$.

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.