• Title/Summary/Keyword: JCN

Search Result 281, Processing Time 0.016 seconds

Dual-Hop Amplify-and-Forward Multi-Relay Maximum Ratio Transmission

  • Erdogan, Eylem;Gucluoglu, Tansal
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, the performance of dual-hop multi-relay maximum ratio transmission (MRT) over Rayleigh flat fading channels is studied with both conventional (all relays participate the transmission) and opportunistic (best relay is selected to maximize the received signal-to-noise ratio (SNR)) relaying. Performance analysis starts with the derivation of the probability density function, cumulative distribution function and moment generating function of the SNR. Then, both approximate and asymptotic expressions of symbol error rate (SER) and outage probability are derived for arbitrary numbers of antennas and relays. With the help of asymptotic SER and outage probability, diversity and array gains are obtained. In addition, impact of imperfect channel estimations is investigated and optimum power allocation factors for source and relay are calculated. Our analytical findings are validated by numerical examples which indicate that multi-relay MRT can be a low complexity and reliable option in cooperative networks.

Multi-Devices Composition and Maintenance Mechanism in Mobile Social Network

  • Li, Wenjing;Ding, Yifan;Guo, Shaoyong;Qiu, Xuesong
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.110-117
    • /
    • 2015
  • In mobile social network, it is a critical challenge to select an optimal set of devices to supply high quality service constantly under dynamic network topology and the limit of device capacity in mobile ad-hoc network (MANET). In this paper, a multi-devices composition and maintenance problem is proposed with ubiquitous service model and network model. In addition, a multi-devices composition and maintenance approach with dynamic planning is proposed to deal with this problem, consisting of service discovery, service composition, service monitor and service recover. At last, the simulation is implemented with OPNET and MATLAB and the result shows this mechanism is better applied to support complex ubiquitous service.

Cloud Radio Access Network: Virtualizing Wireless Access for Dense Heterogeneous Systems

  • Simeone, Osvaldo;Maeder, Andreas;Peng, Mugen;Sahin, Onur;Yu, Wei
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.135-149
    • /
    • 2016
  • Cloud radio access network (C-RAN) refers to the virtualization of base station functionalities by means of cloud computing. This results in a novel cellular architecture in which low-cost wireless access points, known as radio units or remote radio heads, are centrally managed by a reconfigurable centralized "cloud", or central, unit. C-RAN allows operators to reduce the capital and operating expenses needed to deploy and maintain dense heterogeneous networks. This critical advantage, along with spectral efficiency, statistical multiplexing and load balancing gains, make C-RAN well positioned to be one of the key technologies in the development of 5G systems. In this paper, a succinct overview is presented regarding the state of the art on the research on C-RAN with emphasis on fronthaul compression, baseband processing, medium access control, resource allocation, system-level considerations and standardization efforts.

A Beacon-Based Trust Management System for Enhancing User Centric Location Privacy in VANETs

  • Chen, Yi-Ming;Wei, Yu-Chih
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.153-163
    • /
    • 2013
  • In recent years, more and more researches have been focusing on trust management of vehicle ad-hoc networks (VANETs) for improving the safety of vehicles. However, in these researches, little attention has been paid to the location privacy due to the natural conflict between trust and anonymity, which is the basic protection of privacy. Although traffic safety remains the most crucial issue in VANETs, location privacy can be just as important for drivers, and neither can be ignored. In this paper, we propose a beacon-based trust management system, called BTM, that aims to thwart internal attackers from sending false messages in privacy-enhanced VANETs. To evaluate the reliability and performance of the proposed system, we conducted a set of simulations under alteration attacks, bogus message attacks, and message suppression attacks. The simulation results show that the proposed system is highly resilient to adversarial attacks, whether it is under a fixed silent period or random silent period location privacy-enhancement scheme.

Adaptive Video Streaming over HTTP with Dynamic Resource Estimation

  • Thang, Truong Cong;Le, Hung T.;Nguyen, Hoc X.;Pham, Anh T.;Kang, Jung Won;Ro, Yong Man
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.635-644
    • /
    • 2013
  • Adaptive hypertext transfer protocol (HTTP) streaming has become a new trend to support adaptivity in video delivery. An HTTP streaming client needs to estimate exactly resource availability and resource demand. In this paper, we focus on the most important resource which is bandwidth. A new and general formulation for throughput estimation is presented taking into account previous values of instant throughput and round trip time. Besides, we introduce for the first time the use of bitrate estimation in HTTP streaming. The experiments show that our approach can effectively cope with drastic changes in connection throughput and video bitrate.

Design and Evaluation of a Contention-Based High Throughput MAC with Delay Guarantee for Infrastructured IEEE 802.11WLANs

  • Kuo, Yaw-Wen;Tsai, Tung-Lin
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.606-613
    • /
    • 2013
  • This paper proposes a complete solution of a contention-based medium access control in wireless local networks to provide station level quality of service guarantees in both downstream and upstream directions. The solution, based on the mature distributed coordination function protocol, includes a new fixed contention window backoff scheme, a tuning procedure to derive the optimal parameters, a super mode to mitigate the downstream bottleneck at the access point, and a simple admission control algorithm. The proposed system guarantees that the probability of the delay bound violation is below a predefined threshold. In addition, high channel utilization can be achieved at the same time. The numerical results show that the system has advantages over the traditional binary exponential backoff scheme, including efficiency and easy configuration.

Topology-Aware Fanout Set Division Scheme for QoS-Guaranteed Multicast Transmission

  • Kim, Kyungmin;Lee, Jaiyong
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.614-634
    • /
    • 2013
  • The proliferation of real-time multimedia services requires huge amounts of data transactions demanding strict quality-of-service (QoS) guarantees. Multicast transmission is a promising technique because of its efficient network resource utilization. However, high head-of-line (HOL) blocking probability and lack of service-specific QoS control should be addressed for practical implementations of multicast networks. In this paper, a topology aware fanout set division (TAFD) scheme is proposed to resolve these problems. The proposed scheme is composed of two techniques that reduce HOL blocking probability and expedite packet delivery for large-delay branches regarding multicast tree topology. Since management of global topology information is not necessary, scalability of the proposed scheme is guaranteed. Mathematical analysis investigates effects of the proposed scheme and derives optimal operational parameters. The evaluation results show that the TAFD scheme achieves significant delay reduction and satisfies required delay bounds on various multicast networks.

Infotainment Services Based on Push-Mode Dissemination in an Integrated VANET and 3G Architecture

  • Baiocchi, Andrea;Cuomo, Francesca
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.179-190
    • /
    • 2013
  • Given the bandwidth assignment for dedicated short range communications for use in vehicular ad-hoc network (VANET) and the expected introduction of equipment in the next few years, we elaborate on how VANET can support infotainment services. We define an architectural model for the integration of VANETs and cellular networks, according to a push mode paradigm where VANETs are used primarily to disseminate service announcements and general interest messages. Cooperation with cellular network is addressed by comparing architecture alternatives. A set of information dissemination protocols for VANETs is compared via simulations on a real urban map. Some results from a lab testbed based on IEEE 802.11p boards are presented along with an application developed for Android operating system to demonstrate the concept of the paper.

Performance of M-ary Turbo Coded Synchronous FHSS Multiple Access Networks with Noncoherent MFSK under Rayleigh Fading Channels

  • Hong, Sungnam;Cheun, Kyungwhoon;Lim, Hyuntack;Cho, Sunghye
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.601-605
    • /
    • 2013
  • The performance of M-ary turbo coded synchronous, fast frequency-hopping spread spectrum multiple-access (FHSS-MA) networks with M-ary frequency shift keying (MFSK) and noncoherent detection is analyzed under Rayleigh fading. Results indicate that M-ary turbo codes dramatically enhance the performance of FHSS-MA networks using MFSK compared to binary turbo codes.

Cell Searching and DoA Estimation for a Mobile Relay Station in a Multipath Environment

  • Pec, Rothna;Hong, Tae Howan;Cho, Yong Soo
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.191-197
    • /
    • 2013
  • In this paper, a mobile relay station (MRS) for vehicles with a beamforming antenna is considered to increase the reliability of the transmission link, particularly for the MRS at the cell boundary. A cell searching and direction-of-arrival estimation method for an MRS with a uniform linear array is proposed for OFDM-based cellular systems in a multipath environment, even with the existence of the symbol timing offsets and carrier frequency offsets. The performance of the proposed method is evaluated by computer simulation using the standard profile of IEEE 802.16e.