• Title/Summary/Keyword: JASS (Journal of Astronomy and Space Sciences)

Search Result 869, Processing Time 0.022 seconds

A SPECTROSCOPIC STUDY OF THE CLOSE BINARY AG VIRGINIS (근접쌍성 AG Virginis의 분광학적 연구)

  • Kim, Ho-Il;Lee, Chung-Uk;Lee, Jae-Woo;Sohn, Mi-Rim
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.353-362
    • /
    • 2005
  • We performed a new high-resolution spectroscopy of AG Vir for 4 nights from 25 March 2004 using the BOES (Bohyunsan Optical Echelle Spectrograph) attached to the 1.8-m reflector at Bohyunsan Optical Astronomy Observatory, and obtained a total of 59 spectra where all orbital phases are covered. To get the radial velocities of the binary system, both method of the CCF (Cross-Co..elation Function)and the BF (Broadening Function) were applied to the analysis of all the observed spectra. From these, the CCF could calculate the radial velocities of the primary star alone, while the BF could determine those of the primary and the secondary components. New absolute dimensions were deduced with the combination of our spectroscopic orbital elements ($K_1=90.5km/s$$K_2=258.8$) and the photometric solutions of Bell, Rainger, & Hilditch (1990): $A_1,=1.99M_\bigodot,\;M_2=0.62M_\bigodot,\;R_1=2.21R_\bigodot,\;R_2=1.36R_\bigodot,\;L_1=13.17L_\bigodot,\;and\;L_2=3.47L_\bigodot$. Our absolute parameters are larger and brighter than those derived from Bell, Rainger, & Hilditch (1990). We re-analyzed all the previous radial-velocity curves of AG Vir and, as a result, can see that its system velocity scatters largely up to ${\pm}8km/s$. However, we, at present, cannot determine this as the light-time effect due to the third body, which was suggested as a cause of the orbital period changes by Qian (2001).

A NEXT GENERATION MULTI-BEAM FOCAL PLANE ARRAY RECEIVER OF TRAO FOR 86-115 GHZ BAND

  • Chung Moon-Hee;Khaikin Vladimir B.;Kim Hyo-Ryoung;Lee Chang-Hoon;Kim Kwang-Dong;Park Ki-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory), which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.

Variation of Floating Potential in the Topside Ionosphere Observed by STSAT-1

  • Lee, Junhyun;Lee, Ensang;Lee, Jaejin;Kim, Khan-Hyuk;Seon, Jongho;Lee, Dong-Hun;Jin, Ho;Kim, Eung-Hyun;Jeon, Hyun-Jin;Lim, Seong-Bin;Kim, Taeyoun;Jang, Jaewoong;Jang, Kyung-Duk;Ryu, Kwangsun
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.311-315
    • /
    • 2014
  • In this study, we investigated the effect of space plasmas on the floating potential variation of a low-altitude, polar-orbiting satellite using the Langmuir Probe (LP) measurement onboard the STSAT-1 spacecraft. We focused on small potential drops, for which the estimation of plasma density and temperature from LP is available. The floating potential varied according to the variations of plasma density and temperature, similar to the previously reported observations. Most of the potential drops occurred around the nightside auroral region. However, unlike the previous studies where large potential drops were observed with the precipitation of auroral electrons, the potential drops occurred before or after the precipitation of auroral electrons. Statistical analysis shows that the potential drops have good correlation with the temperature increase of cold electrons, which suggests the small potential drops be mainly controlled by the cold ionospheric plasmas.

X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

  • Engle, Scott G.;Guinan, Edward F.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.181-189
    • /
    • 2012
  • To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, ${\delta}$ Cep and ${\beta}$ Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating $10^4$ K up to ${\sim}3{\times}10^5$ K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range ${\varphi}{\approx}0.8-1.0$ and vary by factors as large as $10{\times}$. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log $L_X{\approx}28.5-29.1$ ergs/sec, and plasma temperatures in the $2-8{\times}106$ K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven ${\alpha}^2$ equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 ${\varphi}$) favor the shock heating mechanism hypothesis.

First Comparison of Mesospheric Winds Measured with a Fabry-Perot Interferometer and Meteor Radar at the King Sejong Station (62.2°S, 58.8°W)

  • Lee, Wonseok;Kim, Yong Ha;Lee, Changsup;Wu, Qian
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.235-242
    • /
    • 2018
  • A Fabry-Perot interferometer (FPI) for mesospheric observations was installed at King Sejong Station ($62.2^{\circ}S$, $58.9^{\circ}W$) in Antarctica in 2017. For the initial validation of the FPI measurements, we compare neutral wind data recorded with the FPI with those from a Meteor Radar (MR) located nearby. The overall characteristics of the FPI and MR winds of both OH 892.0 nm (87 km) and OI 557.7 nm (97 km) airglow layers are similar. The FPI winds of both layers generally match the MR winds well on the observed days, with a few exceptions. The correlation analysis of the FPI and MR wind data shows that the correlation coefficients for the zonal winds at 87 and 97 km are 0.28 and 0.54, respectively, and those for the meridional winds are 0.36 and 0.54, respectively. Based on the assumption that the distribution of the airglow emissions has a Gaussian function with respect to the altitude, we calculated the weighted mean winds from the MR wind profile and compared them with the FPI winds. By adjusting the peak height and full width at half maximum of the Gaussian function, we determined the change of the correlation between the two winds. The best correlation for the OH and OI airglow layers was obtained at a peak height of 88-89 km and 97-98 km, respectively.

Optimization of Space Debris Collision Avoidance Maneuver for Formation Flying Satellites

  • Seong, Jae-Dong;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.291-298
    • /
    • 2013
  • The concept of the satellite formation flight is area where it is actively study with expandability and safety compare to existing satellite. For execution of duty with more safety issue, it needs to consider hot topic of space debris for operation of formation flight. In this paper, it suggests heuristic algorithm to have avoidance maneuver for space debris towards operating flight formation. Indeed it covers, using common software, operating simulation to nearest space environment and not only to have goal of avoidance but also minimizing the usage of fuel and finding optimization for maximizing cycle of formation flight. For improvement on convergence speed of existing heuristic algorithm, it substitute to hybrid heuristic algorithm, PSOGSA, and the result of simulation, it represents the satisfaction of minimum range for successful avoidance maneuver and compare to not using avoidance maneuver, it keeps more than three times of formation maintenance performance. From these, it is meaningful results of showing several success goals like simple avoidance collision and fuel usage and decreasing number of times of maintaining formation maneuver.

Structure and Conceptual Design of a Water-Hammering-Type Honsang for Restoration

  • Lee, Yong-Sam;Kim, Sang-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.221-232
    • /
    • 2012
  • We analyzed the manufacturing procedure, specifications, repair history, and details of celestial movements of the water-hammering type $Honsang$ (celestial globe). Results from our study on the remaining $Honsangs$ in China and Japan and on the reconstruction models in Korea were applied to our conceptual design of the water-hammering type $Honsang$. A $Honui$ (armillary sphere) and $Honsang$ using the water-hammering method were manufactured in $Joseon$ in 1435 (the 17th year of King $Sejong$). $Jang$ $Yeong-Sil$ developed the $Honsang$ system based on the water-operation method of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China. Water-operation means driving water wheels using a water flow. The most important factor in this type of operation is the precision of the water clock and the control of the water wheel movement. The water-hammering type $Honsang$ in $Joseon$ probably adopted the $Cheonhyeong$ (天衡; oriental escapement device) system of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China and the overflow mechanism of $Jagyeongnu$ (striking clepsydra) in $Joseon$, etc. In addition to the $Cheonryun$ system, more gear instruments were needed to stage the rotation of the $Honsang$ globe and the sun's movement. In this study, the water-hammering mechanism is analyzed in the structure of a water clock, a water wheel, the $Cheonhyeong$ system, and the $Giryun$ system, as an organically working operation mechanism. We expect that this study will serve as an essential basis for studies on $Heumgyeonggaknu$, the water-operating astronomical clock, and other astronomical clocks in the middle and latter parts of the $Joseon$ dynasty.

An Application of Hilbert-Huang Transform on the Non-Stationary Astronomical Time Series: The Superorbital Modulation of SMC X-1

  • Hu, Chin-Ping;Chou, Yi;Wu, Ming-Chya;Yang, Ting-Chang;Su, Yi-Hao
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.79-82
    • /
    • 2013
  • We present the Hilbert-Huang transform (HHT) analysis on the quasi-periodic modulation of SMC X-1. SMC X-1, consisting of a neutron star and a massive companion, exhibits superorbital modulation with a period varying between ~40 d and ~65 d. We applied the HHT on the light curve observed by the All-Sky Monitor onboard Rossi X-ray Timing Explorer (RXTE) to obtain the instantaneous frequency of the superorbital modulation of SMC X-1. The resultant Hilbert spectrum is consistent with the dynamic power spectrum while it shows more detailed information in both the time and frequency domains. According to the instantaneous frequency, we found a correlation between the superorbital period and the modulation amplitude. Combining the spectral observation made by the Proportional Counter Array onboard RXTE and the superorbital phase derived in the HHT, we performed a superorbital phase-resolved spectral analysis of SMC X-1. An analysis of the spectral parameters versus the orbital phase for different superorbital states revealed that the diversity of $n_H$ has an orbital dependence. Furthermore, we obtained the variation in the eclipse profiles by folding the All Sky Monitor light curve with orbital period for different superorbital states. A dip feature, similar to the pre-eclipse dip of Her X-1, can be observed only in the superorbital ascending and descending states, while the width is anti-correlated with the X-ray flux.

Electromagnetic Electron-Cyclotron Wave for Ring Distribution with Alternating Current (AC) Electric Field in Saturn Magnetosphere

  • Haridas, Annex Edappattu;Kanwar, Shefali;Pandey, Rama Shankar
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.35-42
    • /
    • 2022
  • During their respective missions, the spacecraft Voyager and Cassini measured several Saturn magnetosphere parameters at different radial distances. As a result of information gathered throughout the journey, Voyager 1 discovered hot and cold electron distribution components, number density, and energy in the 6-18 Rs range. Observations made by Voyager of intensity fluctuations in the 20-30 keV range show electrons are situated in the resonance spectrum's high energy tail. Plasma waves in the magnetosphere can be used to locate Saturn's inner magnetosphere's plasma clusters, which are controlled by Saturn's spin. Electromagnetic electron cyclotron (EMEC) wave ring distribution function has been investigated. Kinetic and linear approaches have been used to study electromagnetic cyclotron (EMEC) wave propagation. EMEC waves' stability can be assessed by analyzing the dispersion relation's effect on the ring distribution function. The primary goal of this study is to determine the impact of the magnetosphere parameters which is observed by Cassini. The magnetosphere of Saturn has also been observed. When the plasma parameters are increased as the distribution index, the growth/damping rate increases until the magnetic field model affects the magnetic field at equator, as can be seen in the graphs. We discuss the outputs of our model in the context of measurements made in situ by the Cassini spacecraft.

Validation on Residual Variation and Covariance Matrix of USSTRATCOM Two Line Element

  • Yim, Hyeon-Jeong;Chung, Dae-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • Satellite operating agencies are constantly monitoring conjunctions between satellites and space objects. Two line element (TLE) data, published by the Joint Space Operations Center of the United States Strategic Command, are available as raw data for a preliminary analysis of initial conjunction with a space object without any orbital information. However, there exist several sorts of uncertainties in the TLE data. In this paper, we suggest and analyze a method for estimating the uncertainties in the TLE data through mean, standard deviation of state vector residuals and covariance matrix. Also the estimation results are compared with actual results of orbit determination to validate the estimation method. Characteristics of the state vector residuals depending on the orbital elements are examined by applying the analysis to several satellites in various orbits. Main source of difference between the covariance matrices are also analyzed by comparing the matrices. Particularly, for the Korea Multi-Purpose Satellite-2, we examine the characteristics of the residual variation of state vector and covariance matrix depending on the orbital elements. It is confirmed that a realistic consideration on the space situation of space objects is possible using information from the analysis of mean, standard deviation of the state vector residuals of TLE and covariance matrix.