• 제목/요약/키워드: JACCARD-index

검색결과 27건 처리시간 0.02초

협력필터링의 데이터 희소성 해결을 위한 자카드 지수 반영의 유사도 성능 분석 (Performance Analysis of Similarity Reflecting Jaccard Index for Solving Data Sparsity in Collaborative Filtering)

  • 이수정
    • 컴퓨터교육학회논문지
    • /
    • 제19권4호
    • /
    • pp.59-66
    • /
    • 2016
  • 협력 필터링 시스템에서 데이터 희소성 문제의 해결을 위해 공통평가항목수를 반영하는 방법이 연구되었다. 이러한 방법으로 널리 알려진 자카드 지수는 기존의 유사도 척도와 결합되어 성능을 개선할 수 있었다. 그러나, 다양한 데이터 환경에서 여러 유사도 척도들과 각각 결합했을 때의 성능 개선 효과에 대한 분석 연구는 미미하므로, 본 연구는 이에 대한 분석을 목적으로 한다. 우선 자카드 지수 자체를 유사도 척도로 사용했을때 희소한 데이터셋 상에서 전통적인 척도들보다 월등한 예측 성능을 보였고 추천 성능도 매우 우수하였다. 자카드 지수를 결합함으로써 기존 유사도 척도는 데이터 특성에 상관없이 성능이 대개 향상되었고, 특히 코사인 유사도는 희소한 데이터셋에서 가장 큰 향상을 이루었으나, 평균차이 제곱(Mean Squared Difference)의 유사도는 밀집된 데이터셋에서 오히려 저하된 예측 성능을 보였다. 따라서, 자카드 지수를 결합하여 사용하기 위해 데이터 환경 특성과 유사도 척도를 고려할 필요가 있다.

Jaccard Index Reflecting Time-Context for User-based Collaborative Filtering

  • Soojung Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.163-170
    • /
    • 2023
  • 추천 시스템의 구현 방식들 중 하나인 사용자 기반의 협력 필터링 기법은 유사한 평가 이력을 가진 이웃 사용자들의 산출을 기반으로 하여, 이들의 선호 항목들을 추천한다. 그러나 공통된 평가 이력이 적을 경우에 추천의 질이 현저히 저하되는 데이터 희소성 문제를 근본적으로 갖고 있다. 이러한 문제의 해결을 위하여 많은 기존 연구에서 자카드 계수를 유사도 척도와 접목하는 다양한 방법들을 제안해 왔다. 본 연구에서는 자카드 계수에 시간 인지 개념을 도입하여 공통 항목의 평가 시간에 따라 다른 비중으로 가중합하는 방안을 제시한다. 다양한 성능 척도와 시간 주기를 활용하여 실험을 수행한 결과, 제안 방법이 대부분의 척도에서 원래의 자카드 계수에 비해 가장 우수한 성능을 보였으며, 최적의 시간 주기는 성능 척도의 종류에 따라 다름을 확인하였다.

Applying Different Similarity Measures based on Jaccard Index in Collaborative Filtering

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권5호
    • /
    • pp.47-53
    • /
    • 2021
  • 희소한 평가 데이터는 사용자들 간의 신뢰할만한 유사도 산출을 저해하기 때문에 추천 시스템을 위한 메모리 기반의 협력 필터링 기법의 성능을 저하시킨다. 기존 연구의 많은 결과물은 이 데이터 희소성 문제를 해결하기 위해 개발되었으며, 가장 단순하고 대표적인 업적은 자카드 계수를 활용하는 방법들이다. 이 계수는 두 사용자의 공통 평가 항목수를 반영하며, 그들 간의 유사도를 보다 정확하게 계산하기 위해 전통적인 유사도 척도와 통합된다. 그러나, 그러한 통합은 데이터 희소성의 정도를 고려하지 않은 매우 단순한 방법이다. 본 연구는 두 사용자의 자카드 계수값에 의거하여 다른 유사도 척도를 적용하는 새로운 아이디어를 제시한다. 제안 방법에서 사용하는 파라미터의 최적값을 구하기 위하여 성능 실험을 진행하였고, 다른 관련된 방법들과 비교 평가하였다. 결과로서, 제안 방법은 예측 정확도와 추천 정확도에 있어서 가장 우수하거나 대등한 성능을 보였다.

Comparison of Plant Diversity of Natural Forest and Plantations of Rema-Kalenga Wildlife Sanctuary of Bangladesh

  • Sobuj, Norul-Alam;Rahman, Mizanur
    • Journal of Forest and Environmental Science
    • /
    • 제27권3호
    • /
    • pp.127-134
    • /
    • 2011
  • The purpose of the study was to assess and compare the diversity of plant species (trees, shrubs, herbs) of natural forest and plantations. A total of 52 plant species were recorded in the natural forest, of which 16 were trees, 15 were shrubs and 21 were herbs. On the contrary, 31 species of plants including 11 trees, 8 shrubs and 12 herbs were identified in plantation forest. Shannon-Wiener diversity index were 2.70, 2.72 and 3.12 for trees, shrubs and herbs respectively in the natural forest. However, it was 2.35 for tree species, 2.31 for shrub species and 2.81 for herb species in the plantation forest. Jaccard's similarity index showed that 71% species of trees, 44% species of shrubs and 43% species of herbs were same in plantations and natural forest.

고차원 (유전자 발현) 자료에 대한 군집 타당성분석 기법의 성능 비교 (Comparison of the Cluster Validation Methods for High-dimensional (Gene Expression) Data)

  • 정윤경;백장선
    • 응용통계연구
    • /
    • 제20권1호
    • /
    • pp.167-181
    • /
    • 2007
  • 유전자 발현 자료(gene expression data)는 전형적인 고차원 자료이며, 이를 분석하기 위한 여러 가지 군집 알고리즘(clustering algorithm)과 군집 결과들을 검증하는 군집타당성분석 기법(cluster validation technique)이 제안되고 있지만, 이들 군집 타당성을 분석하는 기법의 성능에 대한 비교, 평가는 매우 드물다. 본 논문에서는 저차원의 모의실험 자료와 실제 유전자 발현 자료에 대하여 군집 타당성분석 기법들의 성능을 비교하였으며, 그 결과 내적 측도에서는 Dunn 지수, Silhouette 지수 순으로 뛰어났고 외적 측도에서는 Jaccard 지수가 성능이 가장 우수한 것으로 평가되었다.

협업필터링을 활용한 보험사 웹 사이트 내의 콘텐츠 추천 시스템 제안 (Proposal of Content Recommend System on Insurance Company Web Site Using Collaborative Filtering)

  • 강지영;임희석
    • 디지털융복합연구
    • /
    • 제17권11호
    • /
    • pp.201-206
    • /
    • 2019
  • 온라인에서 보험 정보를 찾는 이용자들이 많은 반면, 보험사 웹 사이트 콘텐츠 추천 연구 사례는 많지 않았으므로 본 연구에서는 보험사 웹 사이트의 페이지 방문 이력을 활용하여 사용자에게 선호 가능성이 높은 페이지 추천 시스템을 제안하였다. 데이터는 웹 브라우저 이용 시 발생하는 클라이언트 사이트 스토리지(Client-side storage)를 활용하여 수집하였으며, 추천 기술로는 협업 필터링(Collaborative filtering)을 연구에 적용하였다. 실험을 실시한 결과 방문여부를 의미하는 이진화된 데이터를 사용한 자카드 인덱스(Jaccard index) 기반의 아이템 기반 협업 필터링(Item-based collaborative, IBCF)에서 좋은 성능을 나타내었다. 향후에는 아이템에 가중치를 부여한 추천 기술을 연구하여, 기업에서 사용 시 마케팅 전략에 부합하는 콘텐츠 추천 시스템을 구현할 수 있을 것이다.

DeepLabV3+를 이용한 이종 센서의 구름탐지 기법 연구 (A Study on the Cloud Detection Technique of Heterogeneous Sensors Using Modified DeepLabV3+)

  • 김미정;고윤호
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.511-521
    • /
    • 2022
  • 위성영상에서의 구름 탐지 및 제거는 지형관측과 분석을 위해 필수적인 과정이다. 임계값 기반의 구름탐지 기법은 구름의 물리적인 특성을 이용하여 탐지하므로 안정적인 성능을 보여주지만, 긴 연산시간과 모든 채널의 영상 및 메타데이터가 필요하다는 단점을 가지고 있다. 최근 활발히 연구되고 있는 딥러닝을 활용한 구름탐지 기법은 4개 이하의 채널(RGB, NIR) 영상만을 활용하고도 짧은 연산시간과 우수한 성능을 보여주고 있다. 본 논문에서는 해상도가 다른 이종 데이터 셋을 활용하여 학습데이터 셋에 따른 딥러닝 네트워크 성능 의존도를 확인하였다. 이를 위해 DeepLabV3+ 네트워크를 구름탐지의 채널 별 특징이 추출되도록 개선하고 공개된 두 이종 데이터 셋과 혼합 데이터로 각각 학습하였다. 실험결과 테스트 영상과 다른 종류의 영상으로만 학습한 네트워크에서는 낮은 Jaccard 지표를 보여주었다. 그러나 테스트 데이터와 동종의 데이터를 일부 추가한 혼합 데이터로 학습한 네트워크는 높은 Jaccard 지표를 나타내었다. 구름은 사물과 달리 형태가 구조화 되어 있지 않아 공간적인 특성보다 채널 별 특성을 학습에 반영하는 것이 구름 탐지에 효과적이므로 위성 센서의 채널 별 특징을 학습하는 것이 필요하기 때문이다. 본 연구를 통해 해상도가 다른 이종 센서의 구름탐지는 학습데이터 셋에 매우 의존적임을 확인하였다.

피부 병변 분할을 위한 어텐션 기반 딥러닝 프레임워크 (Attention-based deep learning framework for skin lesion segmentation)

  • 아프난 가푸어;이범식
    • 스마트미디어저널
    • /
    • 제13권3호
    • /
    • pp.53-61
    • /
    • 2024
  • 본 논문은 기존 방법보다 우수한 성능을 달성하는 피부 병변 분할을 위한 새로운 M자 모양 인코더-디코더 아키텍처를 제안한다. 제안된 아키텍처는 왼쪽과 오른쪽 다리를 활용하여 다중 스케일 특징 추출을 가능하게 하고, 스킵 연결 내에서 어텐션 메커니즘을 통합하여 피부 병변 분할 성능을 더욱 향상시킨다. 입력 영상은 네 가지 다른 패치로 분할되어 입력되며 인코더-디코더 프레임워크 내에서 피부 병변 분할 성능의 향상된 처리를 가능하게 한다. 제안하는 방법에서 어텐션 메커니즘을 통해 입력 영상의 특징에 더 많은 초점을 맞추어 더욱 정교한 영상 분할 결과를 도출하는 것이다. 실험 결과는 제안된 방법의 효과를 강조하며, 기존 방법과 비교하여 우수한 정확도, 정밀도 및 Jaccard 지수를 보여준다.

트랜스포머 블록과 윤곽선 디코더를 활용한 딥러닝 기반의 피부 병변 분할 방법 (Deep Learning based Skin Lesion Segmentation Using Transformer Block and Edge Decoder)

  • 김지훈;박경리;김해문;문영식
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.533-540
    • /
    • 2022
  • 전문의는 피부암을 조기에 발견하기 위해 피부경을 사용하여 진단하지만 다양한 형태로 인해 피부 병변을 판단하는 데 어려움이 있다. 최근 높은 성능을 보인 딥러닝을 이용한 피부 병변 분할 방법이 제안되었지만 피부와 피부 병변 경계가 명확하지 않아서 피부 병변을 분할하는 데 문제점이 있었다. 이러한 문제를 개선하기 위해 제안하는 방법은 효과적으로 피부 병변을 분할하기 위해 트랜스포머 블록을 구성하였으며, 네트워크의 각 계층마다 윤곽선 디코더를 구성하여 피부 병변을 자세히 분할하였다. 실험 결과, 제안하는 방법은 기존의 방법보다 Dice coefficient 기준 0.041 ~ 0.071, Jaccard Index 기준 0.067 ~ 0.112의 성능 향상을 보인다.

보호지역의 식물종 보전 상보성 평가 (Complimentary Assessment for Conserving Vegetation on Protected Areas in South Korea)

  • 박진한;최혜영;모용원
    • 한국환경생태학회지
    • /
    • 제34권5호
    • /
    • pp.436-445
    • /
    • 2020
  • 아이치 생물다양성 목표11을 달성하기 위하여, 국내 보호지역은 양적으로 꾸준히 증가되어왔으며, 추가 지정이 필요한 잠재 보호지역에 대한 연구도 진행되어왔다. 하지만 효과적인 생물다양성 보전을 위한 보호지역의 상보성에 대한 평가는 미흡하다. 본 연구에서는 제3차 전국자연환경조사의 식물종을 대상으로 종분포모형을 이용하여 잠재서식지역을 도출하고, 기존 보호지역과 잠재보호지역 내 잠재서식지역이 포함되는 종의 풍부도를 유사도 지수인 Jaccard, Sorenson, Bray-curtis를 이용하여 비교분석하였다. 연구결과로 기존 보호지역과 잠재보호지역 대부분이 상보성이 낮아 유사한 식물종을 보전하는 것으로 나타났다. 국립수목원 완충지역이 상보성이 높아 보호지역으로서의 가치가 높다고 할 수 있다. 잠재서식지역이 포함되는 경우가 적은 식물종을 보호하기 위해서는 기존 또는 잠재 보호지역 외 지역에 추가로 보호지역을 선정할 필요가 있음을 확인할 수 있었다. 본 연구는 개별 보호지역이 보호지역으로서 고유한 생태계 또는 생물종 보전이 가능한지 각 보호지역의 생태적 대표성을 확인하고, 공간적으로 추가 보호가 필요한 지역을 탐색하는 방법을 제안했다는 점에서 의의가 있으며, 향후 동물종까지 포함한 상보성 평가를 통한 보호지역의 질적 개선과 계속적으로 조사되는 전국자연환경조사 자료를 이용한 보호지역의 효과성평가 연구 등으로 발전시킬 수 있을 것으로 판단된다.