DOI QR코드

DOI QR Code

Complimentary Assessment for Conserving Vegetation on Protected Areas in South Korea

보호지역의 식물종 보전 상보성 평가

  • Park, Jin-Han (Korea Adaptation Center for Climate Change, Korea Environment Institute) ;
  • Choe, Hyeyeong (Dept. of Ecological Landscape Architecture Design, Kangwon National Univ.) ;
  • Mo, Yongwon (Dept. of Forest resources and Landscape architecture, Yeungnam Univ.)
  • 박진한 (한국환경정책.평가연구원 국가기후변화적응센터) ;
  • 최혜영 (강원대학교 생태조경디자인학과) ;
  • 모용원 (영남대학교 산림자원 및 조경학과)
  • Received : 2020.08.18
  • Accepted : 2020.10.12
  • Published : 2020.10.31

Abstract

The number of protected areas has been steadily increased in Korea to achieve Aichi Target 11, and there are studies on potential protected areas that required additional designation. However, there has been an insufficient assessment of the complementarity of protected areas to conserve biodiversity effectively. This study identified the potential habitat areas using the species distribution model for plant species from the 3rd National Ecosystem Survey and compared the plant species abundance in the existing protected area and the potential protected areas using the similarity indices, such as the Jaccard index, Sorenson index, and Bray-Curtis index. As a result, we found that the complementarity of the existing protected areas and most potential protected areas were low, leading to the preservation of similar plant species. Only the buffer zone for Korea National Arboretum had high complementarity and thus is important to conserve some species with the other protected areas. This study confirmed that it was necessary to select additional protected areas outside the existing or potential protected areas to protect plant species with a low inclusion ratio of potential habitats within the protected area. This study is significant because it identified the ecological representativeness of each protected area to examine if the individual protected area can conserve unique and various species and proposed a method of finding candidate areas for additional conservation spatially. The findings of this study can be a valuable reference for the qualitative improvement of protected areas through the complementarity assessments, including animals and the effectiveness assessment study of protected areas using the National Ecosystem Survey data in the future.

아이치 생물다양성 목표11을 달성하기 위하여, 국내 보호지역은 양적으로 꾸준히 증가되어왔으며, 추가 지정이 필요한 잠재 보호지역에 대한 연구도 진행되어왔다. 하지만 효과적인 생물다양성 보전을 위한 보호지역의 상보성에 대한 평가는 미흡하다. 본 연구에서는 제3차 전국자연환경조사의 식물종을 대상으로 종분포모형을 이용하여 잠재서식지역을 도출하고, 기존 보호지역과 잠재보호지역 내 잠재서식지역이 포함되는 종의 풍부도를 유사도 지수인 Jaccard, Sorenson, Bray-curtis를 이용하여 비교분석하였다. 연구결과로 기존 보호지역과 잠재보호지역 대부분이 상보성이 낮아 유사한 식물종을 보전하는 것으로 나타났다. 국립수목원 완충지역이 상보성이 높아 보호지역으로서의 가치가 높다고 할 수 있다. 잠재서식지역이 포함되는 경우가 적은 식물종을 보호하기 위해서는 기존 또는 잠재 보호지역 외 지역에 추가로 보호지역을 선정할 필요가 있음을 확인할 수 있었다. 본 연구는 개별 보호지역이 보호지역으로서 고유한 생태계 또는 생물종 보전이 가능한지 각 보호지역의 생태적 대표성을 확인하고, 공간적으로 추가 보호가 필요한 지역을 탐색하는 방법을 제안했다는 점에서 의의가 있으며, 향후 동물종까지 포함한 상보성 평가를 통한 보호지역의 질적 개선과 계속적으로 조사되는 전국자연환경조사 자료를 이용한 보호지역의 효과성평가 연구 등으로 발전시킬 수 있을 것으로 판단된다.

Keywords

References

  1. Choe, H.(2015) Biodiversity conservation planning for South Korea: Predicting plant biodiversity dynamics under climate change and the impacts from forest conversion scenarios. Ph.D. Thesis, University of California, Davis. 10036024pp.
  2. Choe, H., J.H. Thorne, R. Hijmans, J. Kim, H. Kwon and C. Seo(2017) Meta-corridor solutions for climate-vulnerable plant species groups in South Korea. Journal of Applied Ecology 54: 1742-1754. https://doi.org/10.1111/1365-2664.12865
  3. Choe, H., J.H. Thorne, W. Joo and H. Kwon(2020) The biodiversity representation assessment in South Korea's protected area network. J. Korean Env. Res. Tech. 23: 77-87. (in Korean with English abstract)
  4. Das, A., H. Nagendra, M. Anand and M. Bunyan(2015) Topographic and bioclimatic determinants of the occurrence of forest and grassland in tropical montane forest-grassland mosaics of the Western Ghats, India. PLoS One 10: 1-19.
  5. Elith, J. and J. Leathwick(2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions 13: 265-275. https://doi.org/10.1111/j.1472-4642.2007.00340.x
  6. Fabricius, C., M. Burger and P.A.R. Hockey(2003) Comparing biodiversity between protected areas and adjacent rangeland in xeric succulent thicket, South Africa: Arthropods and reptiles. Journal of Applied Ecology 40: 392-403. https://doi.org/10.1046/j.1365-2664.2003.00793.x
  7. Fielding, A.H. and J.F. Bell(1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24(1): 38-49. https://doi.org/10.1017/S0376892997000088
  8. Gonzalez-Maya, J.F., L.R. Víquez-R, J.L. Belant and G. Ceballos(2015) Effectiveness of protected areas for representing species and populations of terrestrial mammals in Costa Rica. PLoS One 10: 1-16.
  9. Heo, H.Y., D. Cho, Y. Shim, Y. Ryu, J.P. Hong and G. Shim(2017) A Study on the Expanding Protected Areas through Identifying Potential Protected Areas‐focusing on the experts' recognition with regard to protected area‐. Korean J. Environ. Ecol. 31: 586-594. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2017.31.6.586
  10. Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis(2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. https://doi.org/10.1002/joc.1276
  11. Hirzel, A.H. and G. Le Lay(2008) Habitat suitability modelling and niche theory. Journal of Applied Ecology 45(5): 1372-1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x
  12. Hong, J.P.(2018) Evaluating Quantitative Expansion Goals of the National Protected Areas Integrated System. J. Korean Env. Res. Tech. 21: 57-65. (in Korean with English abstract)
  13. Hong, J.P. and Y.J. Shim(2018) Development of an Integrated Evaluation Method for National Protected Areas Based on Aichi Biodiversity Target 11. Journal of the Korea Society of Environmental Restoration Technology 21: 83-94.
  14. Hong, J.P., Y. Shim and H.Y. Heo(2017a) A Study on Aichi Biodiversity Target 11-Focused on Quanti tative Expansion Goals and Quali tative Improvement Goals of Protected Areas-. J. Korean Env. Res. Tech. 20: 43-58. (in Korean with English abstract)
  15. Hong, J.P., Y. Shim and H.Y. Heo(2017b) Identifying Other Effective Area-based Conservation Measures for Expanding National Protected Areas. J. Korean Env. Res. Tech. 20: 93-105.
  16. Kukkala, A.S. and A. Moilanen(2013) Core concepts of spatial prioritisation in systematic conservation planning. Biological Reviews 88: 443-464. https://doi.org/10.1111/brv.12008
  17. Leathwick, J.R., D. Rowe, J. Richardson, J. Elith and T. Hastie(2005) Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshwater Biology 50: 2034-2052. https://doi.org/10.1111/j.1365-2427.2005.01448.x
  18. Lee, G.G.(2011) Distributional Characteristics and Improvements for Wildlife Protection Areas in South Korea. J. Environ. Impact Assess 20: 685-695. https://doi.org/10.14249/EIA.2011.20.5.685
  19. Levin, N., T. Mazor, E. Brokovich, P.E. Jablon and S. Kark(2015) Sensitivity analysis of conservation targets in systematic conservation planning. Ecological Applications 25: 1997-2010. https://doi.org/10.1890/14-1464.1
  20. Ministry of Environment(2006) The Third Guidelines for National Ecosystem Surveys. National Institute of Environmental Research.
  21. Ministry of Environment(2014) The 3rd National Ecosystem Survey (Vegetation).
  22. Mo, Y.(2018) Aichi Target 11 and Endangered Species, Finding the Protected Area Candidates to Achieve the Two Goals. Journal of National Park Research 9: 322-328. (in Korean with English abstract)
  23. Nenzen, H.K. and M.B. Araujo(2011) Choice of threshold alters projections of species range shifts under climate change. Ecological Modelling 222(18): 3346-3354. https://doi.org/10.1016/j.ecolmodel.2011.07.011
  24. Possingham, H.P., K.A. Wilson, S.J. Andelman and C.H. Vynne(2006) Protected areas: Goals, limitations, and design. In M.J. Groom, G.K. Meffe and C.R. Carroll(Eds.), Principles of Conservation Biology(3rd ed.). Sinauer Associates, Sunderland, MA. pp. 509-533.
  25. Su, C.J., D.M. Debinski, M.E. Jakubauskas and K. Kindscher(2004) Beyond Species Richness: Community Similarity as a Measure of Cross-Taxon Congruence for Coarse-Filter Conservation. Conservation Biology 18: 167-173. https://doi.org/10.1111/j.1523-1739.2004.00337.x
  26. Torontow, V. and D. King(2012) Forest complexity modelling and mapping with remote sensing and topographic data: A comparison of three methods. Canadian Journal of Remote Sensing 37(4): 387-402. https://doi.org/10.5589/m11-047