• 제목/요약/키워드: J-Curve Effect

검색결과 193건 처리시간 0.024초

소형인장시험편의 컴플라이언스에 관한 고찰 (A Study on the Compliance of a Compact Tension Test Specimen)

  • 정기현;석창성;양원호
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.3010-3017
    • /
    • 2000
  • For integrity evaluation of cracked or damaged structures, fracture toughness test results in ASTM are widely used. The fracture toughness values of the structures are used as an effective design criterion in nuclear plants and aircraft structures. Sometimes the difference of P-$\delta$ curve trend during the unloading /reloading cycle in the fracture toughness test using partial unloading compliance was observed. The phenomenon as a possible source of error in determining fracture toughness may be caused by the residual stress during unloading work-hardening and bucking of a specimen. Therefore, we evaluate the effect of bucking and compressive residual stress during the K-R and J-R testing using a finite element method.

일체형원자로 SMART 냉각재 순환펌프의 전산성능예측 (Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART)

  • 김민환;이재선;박진석;김종인;김긍구
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.32-40
    • /
    • 2003
  • CFD analyses of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump including suction and discharge parts are presented and compared with experimental data. The purpose of the current study is to validate the CFD method for the performance analysis of the main coolant pump for SMART and to investigate the effect of suction and discharge shapes on the pump performance. To generate a performance curve, not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicts the experimental head value. In the range of the higher flow rates, the results are also in very good agreement with the experimental data, in magnitude but also in terms of slope of variation. For lower flow rates, the results shows that the analysis considering the suction and discharge well describe the typical S-shape performance curve of the axial pump.

C(T) 시편 측면 홈 유무에 따른 파괴저항곡선 변화가 유한요소 손상모델 변수 결정에 미치는 영향 평가 (Evaluation of the Effect of Fracture Resistance Curve Change Owing to the Presence or Absence of Side Groove in C(T) Specimen on Finite Element Failure Model Parameter Determination)

  • 김훈태;류호완;김윤재;김종성;최명락;김진원
    • 대한기계학회논문집A
    • /
    • 제40권6호
    • /
    • pp.539-546
    • /
    • 2016
  • 본 연구에서는 C(T) 시편 측면 홈의 유무에 따른 J-R 곡선의 변화가 유한요소 손상해석의 모델변수 결정에 미치는 영향을 알아보았다. 손상해석은 수정 응력 파괴변형률 모델을 이용하였다. C(T) 시편은 SA508 Gr. 1a 배관재에서 채취하였고 일부에 측면 홈이 가공되었다. 시험은 상온과 원전 운전 온도인 $316^{\circ}C$에서 각각 수행되었으며, 시험 결과 얻은 J-R 곡선을 모사하여 손상모델 변수를 얻었다. 그 결과, 측면 홈의 유무에 따른 J-R 곡선의 변화는 손상모델 변수 결정에 영향을 주지 않음을 확인하였다.

Effect of postulated crack location on the pressure-temperature limit curve of reactor pressure vessel

  • Choi, Shinbeom;Surh, Han-Bum;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1681-1688
    • /
    • 2019
  • In accordance with ASME Boiler and Pressure Vessel (B&PV) Code Sec.XI Appendix. G, a postulated crack is located at the beltline of a reactor pressure vessel because the neutron flux at the beltline is higher than elsewhere. This means that the distance between the core and the semi-spherical bottom head is longer than the distance between the core and the cylindrical beltline. However, several Small and Medium sized Reactors have bottom heads with diverse shapes, including dished or semi-elliptical shapes, to satisfy the requirement and performance. So, the aim of this paper is to evaluate the effect of crack location on Pressure-Temperature limit curve. To do this, two types of postulated crack location, such as beltline and semi-elliptical bottom head, were adopted to derive the Pressure-Temperature limit curve. Also, parametric studies for neutron flux, crack shape and so on were performed. As a result, core critical temperature of semi-elliptical bottom head is found to higher than that of beltline even when they have same values of thickness and neutron flux. This result will be useful to enhance the understanding of Pressure-Temperature limit curve.

Zr-2.5Nb 압력관의 휘어진 CT시편으로 측정한 J 저항곡선의 정확도에 관한 연구 (A Study on Accuracy of J-Resistance Curves Measured with Curved Compact Tension Specimen of Zr-2.5Nb Pressure Tube)

  • 윤기봉;박태규;김영석
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1986-1996
    • /
    • 2003
  • Methodology based on the elastic-plastic fracture mechanics has been widely accepted in predicting the critical crack length(CCL) of pressure tubes of CANDU nuclear plants. A conservative estimate of CCL is obtained by employing the J-resistance curves measured with the specimens satisfying plane strain condition as suggested in the ASTM standard. Due to limited thickness of the pressure tubes the curved compact tension(CT) specimens taken out from tile pressure tube have been used in obtaining J-resistance curves. The curved CT specimen inevitably introduce slant fatigue crack during precracking. Hence, effect of specimen geometry and slant crack on J-resistance curve should be explored. In this study, the difference of J integral values between the standard CT specimens satisfying plane strain condition and the nonstandard curved CT with limited thickness (4.2mm) is estimated using finite element analysis. The fracture resistance curves of Zr-2.5Nb obtained previously by other authors are critically discussed. Various finite element analysis were conducted such as 2D analysis under plane stress and plane strain conditions and 3D analysis for flat CT, curved CT with straight crack and curved CT with slant crack front. J-integral values were determined by local contour integration near the crack tip, which was considered as accurate J-values. J value was also determined from the load versus load line displacement curve and the J estimation equation in the ASTM standard. Discrepancies between the two values were shown and suggestion was made for obtaining accurate J values from the load line displacement curves obtained by the curved CT specimens.

Low Reverse Saturation Current Density of Amorphous Silicon Solar Cell Due to Reduced Thickness of Active Layer

  • Iftiquar, S M;Yi, Junsin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.939-942
    • /
    • 2016
  • One of the most important characteristic curves of a solar cell is its current density-voltage (J-V) curve under AM1.5G insolation. Solar cell can be considered as a semiconductor diode, so a diode equivalent model was used to estimate its parameters from the J-V curve by numerical simulation. Active layer plays an important role in operation of a solar cell. We investigated the effect thicknesses and defect densities (Nd) of the active layer on the J-V curve. When the active layer thickness was varied (for Nd = 8×1017 cm-3) from 800 nm to 100 nm, the reverse saturation current density (Jo) changed from 3.56×10-5 A/cm2 to 9.62×10-11 A/cm2 and its ideality factor (n) changed from 5.28 to 2.02. For a reduced defect density (Nd = 4×1015 cm-3), the n remained within 1.45≤n≤1.92 for the same thickness range. A small increase in shunt resistance and almost no change in series resistance were observed in these cells. The low reverse saturation current density (Jo = 9.62×10-11 A/cm2) and diode ideality factor (n = 2.02 or 1.45) were observed for amorphous silicon based solar cell with 100 nm thick active layer.

직류전위차법을 이용한 AISI 316강 시효재의 탄소성 파괴인성 평가 (Evaluation of Elastic-Plastic Fracture Toughness of Aged AISI 316 Steel Using DC-electric Potential Method)

  • 임재규;장진상
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.519-527
    • /
    • 1997
  • AISI 316 steel has been used extensively for heater and boiler tube of the structural plants such as power, chemical and petroleum plants under severe operating conditions. Usually, material degradation due to microcrack or precipitation of carbides and segregation of impurity elements, is occured by damage accumulated for long-term service at high temperature in this material. In this study, the effect of aging time on fracture toughness was investigated to evaluate the measurement of material degradation. The elastic-plastic fracture toughness behaviour of AISI 316 steel pipe aged at $550^{\circ}C$for 1h-10000h (the aged material) was characterized using the single specimen J-R curve technique and eletric potential drop method at normal loading rate(load-line displacement speed of 0.2mm/min) in room temperature and air environment. The fracture toughness data from above experiments is compared with the $J_{in}$ obtained from predicted values of crack initiation point using potential drop method.

영광원자력 배관소재의 재료물성치 평가 (1)-정지냉각계통- (Evaluation of Material Properties for Yonggwang Nuclear Piping System(I)-Shutdown Cooling System-)

  • 석창성;최용식;장윤석;김종욱
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1106-1116
    • /
    • 1994
  • Leak Before Break(LBB) design concept is applied to piping systems of newly-built Yonggwang 3, 4 nuclear generating stations as a design alternative to the provision of pipe whip restraints, in recognition of the questionable benefits of providing such restraints. The objective of this paper is to evaluate the material properties (tensile and fracture toughness) of SA312 TP316 stainless steel and their associated welds manufactured for shutdown cooling system of Yonggwang 3, 4 nuclear generating stations. Effect of various parameters such as specimen orientation, test temperature, welding on material properties were examined.

LBB 평가를 위한 J-R 파괴인성시험 결과에 미치는 시편 형상과 측면 홈의 영향 (Effects of Specimen Size and Side-groove on the Results of J-R Fracture Toughness Test for LBB Evaluation)

  • 김진원;최명락;오영진;박흥배;김경수
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.729-736
    • /
    • 2015
  • 본 논문에서는 파단전누설 평가를 위한 J-R 파괴인성시험에 미치는 시편 크기와 측면 홈의 영향을 분석하였다. 이를 위해서 SA508 Gr.1a 배관재에서 채취된 측면 홈이 가공되거나 가공되지 않은 크기가 다른 3종류의 CT 시편(12.7mm 두께의 1T-CT, 25.4mm 두께의 1T-CT, 25.4mm 두께의 2T-CT)을 이용하여 상온과 $316^{\circ}C$에서 J-R 시험을 수행하였다. 시험 결과, 시편 두께에 관계없이 측면 홈이 가공된 시편은 측면 홈이 없는 시편에 비해 낮은 J-R 곡선을 보였으며, 상온에 비해 $316^{\circ}C$에서 측면 홈의 영향이 더욱 뚜렷하였다. 상온에서는 시편의 두께가 감소하고 폭이 증가함에 따라 J-R 곡선이 약간씩 감소하는 경향을 보였으나, $316^{\circ}C$에서는 시편의 두께가 감소하고 폭이 증가됨에 따라 J-R 곡선이 증가하였다. 그러나 SA508 Gr.1a 배관재에서 전체적으로 시편의 폭과 두께에 따른 J-R 곡선의 변화는 크지 않았다.