DOI QR코드

DOI QR Code

Evaluation of the Effect of Fracture Resistance Curve Change Owing to the Presence or Absence of Side Groove in C(T) Specimen on Finite Element Failure Model Parameter Determination

C(T) 시편 측면 홈 유무에 따른 파괴저항곡선 변화가 유한요소 손상모델 변수 결정에 미치는 영향 평가

  • Received : 2015.06.14
  • Accepted : 2016.04.11
  • Published : 2016.06.01

Abstract

In this paper, the effect of J-R curve changes on the determination of parameters in a failure model owing to the presence or absence of a side groove in a C(T) specimen is investigated. A stress-modified fracture strain model is implemented for FE damage simulations. C(T) specimens were taken from SA508 grade 1a low-alloy steel piping material, and some of them were processed with a side groove. Fracture toughness tests were performed at room temperature and at $316^{\circ}C$. The parameters of the failure model were determined by damage simulations using the J-R curves obtained from the tests. Finally, the results show that the determination of failure model parameters is not affected by variations in J-R curves owing to the presence or absence of a side groove.

본 연구에서는 C(T) 시편 측면 홈의 유무에 따른 J-R 곡선의 변화가 유한요소 손상해석의 모델변수 결정에 미치는 영향을 알아보았다. 손상해석은 수정 응력 파괴변형률 모델을 이용하였다. C(T) 시편은 SA508 Gr. 1a 배관재에서 채취하였고 일부에 측면 홈이 가공되었다. 시험은 상온과 원전 운전 온도인 $316^{\circ}C$에서 각각 수행되었으며, 시험 결과 얻은 J-R 곡선을 모사하여 손상모델 변수를 얻었다. 그 결과, 측면 홈의 유무에 따른 J-R 곡선의 변화는 손상모델 변수 결정에 영향을 주지 않음을 확인하였다.

Keywords

References

  1. Han, J. J., Bae, K. D., Kim, Y. J., Kim, J. H. and Kim, N. H., 2014, "Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel," Trans. Korean Soc. Mech. Eng. A, Vol. 38, No. 7, pp. 727-734. https://doi.org/10.3795/KSME-A.2014.38.7.727
  2. Yasufumi, I. and Tomokazu, M., 1982, "Effect of Side Grooves on the Elastic-plastic Stress State of Fracture Toughness Specimens - Three-dimensional Finite Element Analysis," Engineering Fracture Mechanics, 16.5, pp. 659-668. https://doi.org/10.1016/0013-7944(82)90019-4
  3. McClintock, F. A., 1968, "A Criterion of Ductile Fracture by the Growth of Holes," Journal of Applied Mechanics, 35.2, pp. 363-371. https://doi.org/10.1115/1.3601204
  4. Rice, J. R. and Tracey, D. M., 1969, "On the Ductile Enlargement of Voids in Triaxial Stress Fields," Journal of the Mechanics and Physics of Solids, 17.3, pp. 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  5. Hancock, J. W. and Mackenzie, A. C., 1976, "On the Mechanisms of Ductile Failure in High-strength Steels Subject to Multi-axial Stress States," Journal of the Mechanics and Physics of Solids, 24.2-3, pp. 147-160. https://doi.org/10.1016/0022-5096(76)90024-7
  6. Arndt, J. and Dahl, W., 1997, "Effect of Void Growth and Shape on the Initiation of Ductile Failure of Steels," Computational materials science, 9.1, pp. 1-6. https://doi.org/10.1016/S0927-0256(97)00052-9
  7. Kanvinde, A. M. and Deierlein, G. G., 2006, "The Void Growth Model and the Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels," Journal of Structural Engineering, 132.12, pp. 1907-1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907)
  8. Kim, J. W., Choi, M. R., Oh, Y. J., Park, H. B. and Kim, K. S., 2014, "Effects of Specimen Size and Sidegroove on the Results of J-R Fracture Toughness Test for LBB Evaluation," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 7, pp. 729-736. https://doi.org/10.3795/KSME-A.2015.39.7.729
  9. ASTM Standard E8/E8M, 2009, "Standard Test Methods for Tension Testing of Metallic Materials," ASTM International.
  10. ASTM Standard E1820, 2011, "Standard Test Method for Measurement of Fracture Toughness," ASTM International.
  11. Kim, N. H., Oh, C. S., Kim, Y. J., Yoon, K. B. and Ma, Y. H., 2011, "Comparison of Fracture Strain Based Ductile Failure Simulation with Experimental Results," International Journal of Pressure Vessels and Piping, 88.10, pp. 434-447. https://doi.org/10.1016/j.ijpvp.2011.07.006
  12. Oh, C. S., Kim, N. H., Kim, Y. J., Baek, J. H., Kim, Y. P. and Kim, W. S., 2010, "A Finite Element Ductile Failure Simulation Method Using Stress-modified Fracture Strain Model," Engineering Fracture Mechanics, 78.1, pp. 124-137. https://doi.org/10.1016/j.engfracmech.2010.10.004
  13. Hancock, J. W. and Cowling, M. J., 1980, "Role of State of Stress in Crack-tip Failure Processes," Metal Science, 14.8-9, pp. 293-304. https://doi.org/10.1179/msc.1980.14.8-9.293
  14. Mackenzie, A. C., Hancock, J. W. and Brown, D. K., 1977, "On the Influence of State of Stress on Ductile Failure Initiation in High Strength Steels," Engineering Fracture Mechanics, 9.1, pp. 167-188. https://doi.org/10.1016/0013-7944(77)90062-5
  15. Dassault Systemes, 2013, ABAQUS User's Manual, Version 6.13.
  16. Oh, C. K., Kim, Y. J., Baek, J. H., Kim, Y. P. and Kim W. S., 2007, "Ductile Failure Analysis of API X65 Pipes with Notch-type Defects Using a Local Fracture Criterion," International Journal of Pressure Vessels and Piping, Vol. 84, No. 8, pp. 512-525. https://doi.org/10.1016/j.ijpvp.2007.03.002
  17. Ewing, D. J. F. and Hill, R., 1967, "The Plastic Constraint of V-notched Tension Bars," Journal of the Mechanics and Physics of Solids, Vol. 15, No. 2, pp. 115-124. https://doi.org/10.1016/0022-5096(67)90021-X