• Title/Summary/Keyword: J Integral Range

Search Result 60, Processing Time 0.021 seconds

A Study on Transition From Cycle-dependent to Time-dependent Crack Growth in SUS304 Stainless Steel (SUS304강의 사이클의존형에서 시간의존형균열성장으로의 천이에 관한 연구)

  • 주원식;조석수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.38-46
    • /
    • 1996
  • High temperature low cycle fatigue crack growth behavior is investigated over a range of two temperatures and various frequencies in SUS 304 stainless steel. It is found that low frequency and temperature can enhance time-dependent crack growth. With high temperature, low frequency and long crack length, ${\Delta}J_c/{\Delta}J_ f$, the ratio of creep J integral range to fatigue J integral range is increased and time-dependent crack growth is accelerated. Interaction between ${\Delta}J_f$ and ${\Delta}J_c$ is occured at high frequency and low temparature and ${\Delta}J_c$, creep J integral range is fracture mechanical parameter on transition from cycle-dependent to time dependent crack growth in creep temperature region.

  • PDF

AE Count Rate and Crack Growth Rate under Low Cycle Fatigue Fracture Loading (저주기 피로 파괴 하중하에서 AE수 변화율과 균열성장율에 관한 연구)

  • 이강용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.252-256
    • /
    • 1989
  • In the low cycle fatigue fracture testing with KS(or JIS) SS41, crack growth rate, AE count rate and J-integral range are measured to get empirical relations between crack growth rate and J-integral range, AE count rate and J-integral range as well as AE count rate and crack growth rate. All the relations are shown to be linear on the log-log graphs. It is also shown that the linear relations can be formulated by using Dunegan's assumption and elastic-plastic fracture mechanics along with the well-known relation of crack growth rate and J-integral range. It is concluded that the differences between experimental and theoretical values are due to Dunegan's assumption.

A Study on the Fatigue Crack Propagation Behavior of Cr-Mo-V Alloy with Micro Defects at High Temperature. (미소 원공결함을 갖는 Cr-Mo-V강의 고온피로 크랙전파거동)

  • Song, Samhong;Kang, Myungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.70-77
    • /
    • 1996
  • Fatigue tests were carried out at high temperature on a Cr-Mo-V steel in order to assess the fatigue life of components used in power plants. The characteristics of high temperature fatigue were divided in terms of cycle-dependent fatigue and time-dependent fatigue, each crack propagation rate was examined with respect to fatigue J-integral range, .DELTA. J$_{f}$and creep J-integral range, .DELTA. J$_{c}$. The fatigue life was evaluated by analysis of J-integral value at the crack tip with a dimensional finite element method. The results obtained from the present study are summarized as follows : The propagation characteristics of high temperature fatigue cracks are determined by .DELTA. J$_{f}$for the PP(tensile plasticity-compressive plasticity deformation) and PC(tensile plasticity - compressive creep deformation) stress waveform types, and by .DELTA. J$_{c}$for the CP(tensile creep- compressive plasticity deformation) stress waveform type. The crack propagation law of high temperature fatigue is obtained by analysis of J-integral value at the crack tip using the finite element method and applied to examine crack propagation behavior. The fatigue life is evaluated using the results of analysis by the finite element method. The predicted life and the actual life are close, within a factor of 2.f 2.f 2.

  • PDF

Description of crack growth behavior of SB41 steel in terms of J integral (J적분에 의한 SB41강의 피로균열 진전 특성 평가)

  • 배원호;김상태;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1568-1575
    • /
    • 1990
  • Fatigue crack growth behavior was investigated in the center cracked plate of KS SB41 steel and the relation between the crack growth rate and various mechanical parameters was studied at small scale yielding, large scale yielding and full scale yielding. The crack opening ratio U was about 0.6-0.8 and had the larger value in the case of load control than that of strain control. Effective stress intensity factor range, .DELTA.K$_{eff}$ and J integral range, .DELTA.J were obtained from the notion of crack opening, and the crack growth rate was expressed with these values. The value of J integral range increased rapidly at stress ratio, R=0 in full scale yielding of load control test. COD value also increased rapidly with the increase of ligament net stress at large scale yielding of load control test.t.

Thermo-Mechanical Fatigue Crack Propagation Behaviors of 1.5Cr-0.67Mo-0.33V Alloy (1.5Cr-0.67Mo-0.33V강의 열피로 크랙전파 거동)

  • 송삼홍;강명수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2133-2141
    • /
    • 1995
  • The thermo-mechanical fatigue tests were performed on the specimens extracted from 1.5Cr-0. 67Mo-0.33V alloy. The characteristics of thermo-mechanical fatigue crack propagation were examined and reviewed in view of fracture mechanics. The results obtained from the present study are summarized as follows : (1) The propagation characteristics of isothermal low-cycle fatigue crack are dominated by .DELTA.J$_{f}$ in case of PP waveform, and .DELTA.J$_{c}$ in case of CP waveform. (II)The propagation characteristics of thermo-mechanical fatigue crack are dominated by .DELTA.J$_{c}$ for in-phase case, and by .DELTA.J$_{c}$ for out-of-phase. The present results were in good agreement with the equation of propagation law for isothermal low-cycle fatigue crack in case of thermo-mechanical fatigue.tigue.e.

A Study on the Behavior of the Plane Stress Fracture Toughness - About the Compact Tension Specimen- (平面應力 破壞靭性値 擧動에 관한 硏究)

  • 송삼홍;고성위
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.937-946
    • /
    • 1986
  • In this paper, the plane stress fracture toughness of low carbon steel with 3mm thickness is investigated for various specimen widths and crack ratios using the J integral. The experiments is carried out for the compact tension(CT) specimen on an Instron machine. For materials that may be approximated by the Ramberg and Osgood stress strain law, the relevant crack parameter like the J integral and load line displacement are approximately normalized. Crack driving forces in terms of J integral is computed using the above estimation scheme. Abtained results are summarized as follows. (1) The plane stress fracture toughness, J$_{c}$, is almost constant in the range 50-70mm of width. Hence J$_{c}$ can be obtained by using smaller specimen than ASTM standard. (2) Yoon's and Simpson's formular which considers crack growth in obtaining J integral show more consevative J than Rice's and Merkle's (3) J$_{c}$ is almost constant in the range 0.499-0.701 crack ratios tested. J$_{c}$ obtained by using Kumar's formular is 28.14kgf/mm for base metal specimen and 32.51kgf/mm for annealed. (4) Comparison of the prediction with actual experimental measurements by Yoon's formular show good agreement for several different-size specimens.

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

A fundamental study of J-integral using the method of caustics for polycarbonate (Caustics 방법에 의한 Polycarbonate의 J-적분값 결정에 관한 기초적 연구)

  • 이억섭;박기용
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 1990
  • This study investigated a method for the determination of the J-integral for a tough glassy polymer such as polycarbonate plates by using the method of caustics. Comparing the values of J-integral determined by a numerical analysis and by the method of caustics, the method of caustics was found to be an effective experimental technique for the determination of the J-integral. The ratio between two J-integrals determined by the method of caustics and by finite element method converged into 1 within the limit of low load. However, it was noticed that the greater the plastic zone at the crack tip was, the lower the J-integral obtained by the reflect method of caustics. This difference may be deduced from the damage at the crack tip such as craze appeared in the polycarbonate plate. It was confirmed that the ratio of longitudinal diameter( $D_{l}$ ) to transverse diameter ( $D_{t}$) of caustics generally converged into 1 at the low load. The transition of the state of stress at the vicinity of a crack tip from plane strain to plane stress was deduced by noticing that the longitudinal diameter( $D_{l}$ ) grew faster than the transverse diameter( $D_{t}$) of caustics within the higher load range.

  • PDF

Fracture toughness of Low-carbon steel using J-intergral Principle (J-적분을 이용한 저탄소강의 파괴탄성치 결정)

  • ;;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.133-142
    • /
    • 1979
  • The fracture toughness of a hot rolled 100 mm thick SS41 steel plate was investigated for various crack ratios and thichnesses using the method of J-integral. The experiments were performed on an MTS machine and the crack initiation point was detected by using an electricl impedance method. The J-integral computed at the initiation point of the slow stable crack growth was almost constant within the range of crack ratios tested. The fracture toughness thus obtained was $J_{1c}/=27.0kgf/mm$ for specimens having fracture plane parallel to the rolling direction and 35.5kgf/mm for those perpendicular to the rolling direction. The J- integral computed at maximum load point was found to be unsuitable for fracture toughness determination, becaese of large variation depending on the crack ratio and thickness. It was also found that the slow stable crack growth increases as the thickness and/or crack ration of the specimen decrease.

INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

  • UPADHYAYA, BELLE R.;LISH, MATTHEW R.;HINES, J. WESLEY;TARVER, RYAN A.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.148-156
    • /
    • 2015
  • Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C) strategies for a large 1,000 MWe iPWR is described. Reactor system modeling-which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum-is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.