• Title/Summary/Keyword: Izhikevich-FitzHugh model

Search Result 1, Processing Time 0.014 seconds

BIFURCATIONS OF STOCHASTIC IZHIKEVICH-FITZHUGH MODEL

  • Nia, Mehdi Fatehi;Mirzavand, Elaheh
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.402-418
    • /
    • 2022
  • Noise is a fundamental factor to increased validity and regularity of spike propagation and neuronal firing in the nervous system. In this paper, we examine the stochastic version of the Izhikevich-FitzHugh neuron dynamical model. This approach is based on techniques presented by Luo and Guo, which provide a general framework for the bifurcation and stability analysis of two dimensional stochastic dynamical system as an Itô averaging diffusion system. By using largest lyapunov exponent, local and global stability of the stochastic system at the equilibrium point are investigated. We focus on the two kinds of stochastic bifurcations: the P-bifurcation and the D-bifurcations. By use of polar coordinate, Taylor expansion and stochastic averaging method, it is shown that there exists choices of diffusion and drift parameters such that these bifurcations occurs. Finally, numerical simulations in various viewpoints, including phase portrait, evolution in time and probability density, are presented to show the effects of the diffusion and drift coefficients that illustrate our theoretical results.