• Title/Summary/Keyword: Iterative detection and decoding

Search Result 30, Processing Time 0.02 seconds

Joint Processing of Zero-Forcing Detection and MAP Decoding for a MIMO-OFDM System

  • Sohn, In-Soo;Ahn, Jae-Young
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.384-390
    • /
    • 2004
  • We propose a new bandwidth-efficient technique that achieves high data rates over a wideband wireless channel. This new scheme is targeted for a multiple-input multiple- output orthogonal frequency-division multiplexing (MIMO-OFDM) system that achieves transmit diversity through a space frequency block code and capacity enhancement through the iterative joint processing of zero-forcing detection and maximum a posteriori (MAP) decoding. Furthermore, the proposed scheme is compared to the coded Bell Labs Layered Space-Time OFDM (BLAST-OFDM) scheme.

  • PDF

Improving Iterative Detection and Decoding Based on SC-MMSE with EXIT Analysis (EXIT 차트분석을 이용한 SC-MMSE기반 반복수신기의 성능 증대)

  • Nam, Jun-Yeong;Kim, Seong-Rak;Jeong, Hyeon-Gyu
    • Information and Communications Magazine
    • /
    • v.24 no.12
    • /
    • pp.14-21
    • /
    • 2007
  • This paper aims to improve the design of iterative detection and decoding(IDD) based on the soft interference cancellation with minimum mean squared error(SC-MMSE) detector, which shows low performance compared to the maximum a posteriori(MAP) detector. By means of extrinsic information transfer(EXIT) chart analysis, such low performance may be attributed to that the "pure"(original) turbo principle is not always best for IDD. Thus, we propose a new IDD architecture based on the SC-MMSE detector which uses new a priori information. Simulation results show that the performance of the proposed IDD is very close to that of IDD based on the MAP detector.

A Study on the New Delay Stopping Criterion of Turbo Code in W-CDMA System (W-CDMA 시스템에서 터보 부호의 새로운 복호지연 감소방식에 관한 연구)

  • Park, No-Jin;Shin, Myung-Sik
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.4
    • /
    • pp.207-215
    • /
    • 2009
  • In recent digital communication systems, the performance of Turbo Code used as the error correction coding method depends on the interleaver size influencing the free distance determination and iterative decoding algorithms of the turbo decoder. However, some iterations are needed to get a better performance, but these processes require large time delay. Recently, methods of reducing the number of iteration have been studied without degrading original performance. In this paper, the new method combining ME (Mean Estimate) stopping criterion with SDR (sign difference ratio) stopping criterion of previous stopping criteria is proposed, and the fact of compensating each method's missed detection is verified Faster decoding realizes that reducing the number of iterative decoding about 1~2 times by adopting our proposed method into serially concatenation of both decoder. System Environments were assumed DS-CDMA forward link system with intense MAI (multiple access interference).

  • PDF

Iterative MIMO Reception Based on Low Complexity Soft Detection (저연산 연판정 기반의 다중 안테나 반복검출 기법)

  • Shin, Sang-Sik;Choi, Ji-Woong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.61-66
    • /
    • 2013
  • In this paper, we propose an iterative soft dimension reduction based multi-input multi-output (MIMO) detection for coded spatial multiplexing system. In spite of better performance of iterative MIMO detection, its computational complexity gives a significant burden to the receivers. To mitigate this problem, we propose a scheme employing all ordering successive interference cancellation (AOSIC) for hard-decision detection and dimension reduction soft demodulator (DRSD) with iterative decoding for soft-decision detectors, respectively. This scheme can reduce complexity of iterative soft MIMO detection and provide better performance than other conventional detectors.

Radius optimization for efficient list sphere decoding (효율적인 리스트 구복호기 검출방식을 위한 구반경의 최적화에 관한 연구)

  • Lee, Jae-Seok;Lee, Byoung-Ju;Shim, Byong-Hyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.46-49
    • /
    • 2010
  • 최근의 iterative detection and decoding (IDD) 기법에서의 soft 복호화방식은, log-likelihood ratio (LLR) 값의 신뢰도를 높이기 위해 기존의 구복호화 (sphere decoding) 방식보다는 리스트를 형성하는 구복호화방식 (list sphere decoding : LSD)이 대두되고 있다. 기존의 구복호화 방식과는 달리 리스트 구복호화 방식은 그 성능의 우수함에도 불구하고, 여러 격자 포인트들을 검출해야 하므로 신호대잡음비 (signal-to-noise ratio : SNR) 의 증가에 따른 복잡도의 이득을 거의 취할 수 없을 뿐만 아니라, 무엇보다 신뢰도가 높은 LLR 값을 얻는 데에 영향이 작은 포인트를 검출하는 경우도 생긴다는 점에서 비효율적인 측면이 있다. 이에 본 논문에서는 리스트 구복호화 검출방식의 효율성을 높이기 위해 LLR 값에 적은 영향을 미치는 격자 포인트들을 제거하는 방식에 대해 연구하였다. 본 연구의 목표는 MIMO 시스템에서의 기존의 리스트 구복호화 기법의 capacity와 실제 성능과 최대한 유사한 성능을 내면서도 그 복잡도를 현저히 줄이는 것이며, 구체적으로는 검출을 위한 초기 구반경의 최적화를 기반으로 한다.

  • PDF

Estimation of soft decision channel gain for coded MIMO system (부호화된 MIMO 시스템에서 연판정 채널 이득값의 계산)

  • Kim, Young-Min;Shang, Ping Ping;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.577-586
    • /
    • 2011
  • Modem digital communication systems are required to use forward error correction (FEC) codes to combat inevitable channel impairment. Turbo codes or low density parity check (LDPC) codes, using iterative decoding with soft decision detection (SDD) information, are the most common examples. The excellent performance of these codes should be conditioned on accurate estimation of soft decision detection information. In order to use FEC codes with iterative decoding for Multi-Input Multi-Output (MIMO) system, reliable soft decision channel gain should be provided. In this paper, we investigate efficient SDD methods for turbo-coded MIMO system, and derive the corresponding formulas of SDD for various MIMO detection schemes. We present simulation results of the derived SDD schemes for turbo-coded MIMO systems, and show that the presented results almost approximate to maximum likelihood detection performance with much less computational load.

ML Symbol Detection for MIMO Systems in the Presence of Channel Estimation Errors

  • Yoo, Namsik;Back, Jong-Hyen;Choi, Hyeon-Yeong;Lee, Kyungchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5305-5321
    • /
    • 2016
  • In wireless communication, the multiple-input multiple-output (MIMO) system is a well-known approach to improve the reliability as well as the data rate. In MIMO systems, channel state information (CSI) is typically required at the receiver to detect transmitted signals; however, in practical systems, the CSI is imperfect and contains errors, which affect the overall system performance. In this paper, we propose a novel maximum likelihood (ML) scheme for MIMO systems that is robust to the CSI errors. We apply an optimization method to estimate an instantaneous covariance matrix of the CSI errors in order to improve the detection performance. Furthermore, we propose the employment of the list sphere decoding (LSD) scheme to reduce the computational complexity, which is capable of efficiently finding a reduced set of the candidate symbol vectors for the computation of the covariance matrix of the CSI errors. An iterative detection scheme is also proposed to further improve the detection performance.

Iterative Decoding far a Satellite Broadcasting Channel (위성 통신에서의 반복 복호 기법)

  • Lee, Jae-Sun;Park, Jae-Sun;Lee, Byoung-Moo;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.309-313
    • /
    • 2009
  • In this paper, the network performance of a turbo coded optical code division multiple access (CDMA) system with cross-layer, which is between physical and network layers, concept is analyzed and simulated. We consider physical and MAC layers in a cross-layer concept. An intensity-modulated/direct-detection (IM/DD) optical system employing pulse position modulation (PPM) for satellite broadcasting communications is considered. In order to increase the system performance, turbo codes composed of parallel concatenated convolutional codes (PCCCs) is utilized. The network performance is evaluated in terms of bit error probability (BEP). From the simulation results, it is demonstrated that turbo coding offers considerable coding gain with reasonable encoding and decoding complexity. Also, it is confirmed that the performance of such an optical CDMA network can be substantially improved by increasing the interleaver length and the number of iterations in the decoding process. The results of this paper can be applied to implement the satellite broadcasting communications.

  • PDF

Efficient LDPC-Based, Threaded Layered Space-Time-Frequency System with Iterative Receiver

  • Hu, Junfeng;Zhang, Hailin;Yang, Yuan
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.807-817
    • /
    • 2008
  • We present a low-density parity-check (LDPC)-based, threaded layered space-time-frequency system with emphasis on the iterative receiver design. First, the unbiased minimum mean-squared-error iterative-tree-search (U-MMSE-ITS) detector, which is known to be one of the most efficient multi-input multi-output (MIMO) detectors available, is improved by augmentation of the partial-length paths and by the addition of one-bit complement sequences. Compared with the U-MMSE-ITS detector, the improved detector provides better detection performance with lower complexity. Furthermore, the improved detector is robust to arbitrary MIMO channels and to any antenna configurations. Second, based on the structure of the iterative receiver, we present a low-complexity belief-propagation (BP) decoding algorithm for LDPC-codes. This BP decoder not only has low computing complexity but also converges very fast (5 iterations is sufficient). With the efficient receiver employing the improved detector and the low-complexity BP decoder, the proposed system is a promising solution to high-data-rate transmission over selective-fading channels.

  • PDF

An Algorithm for Iterative Detection and Decoding MIMO-OFDM HARQ with Antenna Scheduling

  • Kim, Kyoo-Hyun;Kang, Seung-Won;Mohaisen, Manar;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.4
    • /
    • pp.194-208
    • /
    • 2008
  • In this paper, a multiple-input-multiple-output (MIMO) hybrid-automatic repeat request (HARQ) algorithm with antenna scheduling is proposed. It retransmits the packet using scheduled transmit antennas according to the state of the communication link, instead of retransmitting the packet via the same antennas. As a result, a combination of conventional HARQ systems, viz. chase combining (CC) and incremental redundancy (IR) are used to achieve better performance and lower redundancy. The proposed MIMO-OFDM HARQ system with antenna scheduling is shown to be superior to conventional MIMO HARQ systems, due to its spatial diversity gain.