• Title/Summary/Keyword: Iterative Receiver

Search Result 80, Processing Time 0.021 seconds

Efficient LDPC-Based, Threaded Layered Space-Time-Frequency System with Iterative Receiver

  • Hu, Junfeng;Zhang, Hailin;Yang, Yuan
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.807-817
    • /
    • 2008
  • We present a low-density parity-check (LDPC)-based, threaded layered space-time-frequency system with emphasis on the iterative receiver design. First, the unbiased minimum mean-squared-error iterative-tree-search (U-MMSE-ITS) detector, which is known to be one of the most efficient multi-input multi-output (MIMO) detectors available, is improved by augmentation of the partial-length paths and by the addition of one-bit complement sequences. Compared with the U-MMSE-ITS detector, the improved detector provides better detection performance with lower complexity. Furthermore, the improved detector is robust to arbitrary MIMO channels and to any antenna configurations. Second, based on the structure of the iterative receiver, we present a low-complexity belief-propagation (BP) decoding algorithm for LDPC-codes. This BP decoder not only has low computing complexity but also converges very fast (5 iterations is sufficient). With the efficient receiver employing the improved detector and the low-complexity BP decoder, the proposed system is a promising solution to high-data-rate transmission over selective-fading channels.

  • PDF

Performance of a Coded Frequency Hopping OFDMA System with an Iterative Receiver in Uplink Cellular Environments (상향 링크 셀룰러 환경에서 반복 수신 기법을 적용한 부호화된 주파수 도약 OFDMA 시스템의 성능)

  • Kim, Yun-Hee;Kang, Sung-Kyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1108-1115
    • /
    • 2005
  • In this paper, we propose a practical iterative channel estimation and decoding method for an LDPC-coded frequency hopping OFDMA system in the uplink of a packet-based cellular system. In the method, the channel gain and noise variance are iteratively estimated with both pilot symbols and LDPC decoder outputs to provide more reliable decoding metrics in intercell interference (ICI) environments. In addition, the channel correlation coefficient is also estimated to select proper filter coefficients according to the channel variation rate. Through simulations under the various channel conditions and different receiver configurations, it is shown that the proposed iterative receiver improves the performance without boosting the pilot power and mitigates the adverse effects of the non-uniform ICI.

Performance Evaluation of a DVB-T2 Receiver with Iterative Demapping and Decoding in MISO Transmission Mode (MISO 전송 모드에서 Iterative Demapping and Decoding을 사용하는 DVB-T2 수신기의 성능분석)

  • Paik, Jong-Ho;Seo, Jeong-Wook;Kang, Ming-Goo;Jeon, Eun-Sung;Kim, Dong-Ku
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.111-117
    • /
    • 2011
  • In this paper, the BER(Bit Error Rate) performance of a DVB-T2(Second Generation Digital Terrestrial Television Broadcasting System) in MISO(Multiple Input Single Output) transmission mode is evaluated by the computer simulation. In the DVB-T2 receiver, an IDD(Iterative Demapping and Decoder) technique is employed that exchanges extrinsic information between the demapper and the LDPC decoder. Simulation results show that the IDD-based DVB-T2 receiver in MISO transmission mode provides 2dB gain at BER of $10^{-4}$ but suffer from the frequency offsets between transmit antennas.

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.

Adaptive Iteration Schemes for Iterative Receivers in MIMO Systems (다중 안테나 반복 수신 시스템에서의 적응형 반복 결정 방법에 관한 연구)

  • Noh, Jeehwan;Kwon, Dongseung;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.3-8
    • /
    • 2013
  • We consider some adaptive iteration schemes that provide lower complexity of the iterative receiver by reducing unnecessary iterations. While conventional iterative receiver considers only fixed number of iterations, we apply adaptive iteration schemes, taking into account quality of the received frame. Based on simulation results, proposed schemes reduce average number of iterations while maintaining BER performance compared to the conventional scheme.

An Efficient Iterative Receiver for OFDMA Systems in Uplink Environments (직교 주파수 분할 다중 접속 시스템 상향 전송에 알맞은 효율적인 반복 수신 기법)

  • Hwang, Hae-Gwang;Sang, Young-Jin;Byun, Il-Mu;Kim, Kwang-Soon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.8-15
    • /
    • 2006
  • In this paper, we propose the iterative receiver for LDPC-coded OFDMA systems in uplink environments. Applying the Wiener filtering to pilot symbols, an initial channel estimation can be performed effectively. To reduce the complexity of the Wiener filtering, we approximate Wiener filtering coefficients to pre-determined coefficients according to estimated correlation of channel. After an LDPC decoding process, soft symbol derived by extrinsic information of decoder outputs is used to estimate channel. we also derive the error variance of channel estimation and maximum ratio combined results. Using combined results, the channel correlation is re-estimated. Then the proper Wiener filtering coefficients are chosen according to the re-estimated result of the channel correction. Using a computer simulation, we show that the proposed receiver structure has the better performance than the receiver using only pilot symbols.

Design of effective Receiver in Wireless Network using turbo code (무선망에서 Turbo 코드를 이용한 효율적 수신기 설계)

  • Seok, Gyeong-Hyu;Choi, Woo-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.975-981
    • /
    • 2012
  • In this paper, we considered the received signal of the wideband CDMA systems using turbo code in the multipath channel environments, and analyze the performance of the system. This study is to analyze the performance for the variable system bandwidth according to the number of branches of rake receiver by passing the received signal through a rake receiver with a turbo code in Rayleigh fading channel environments. For the design of receiver in wideband CDMA systems, we presented the efficient parameters for the number of iterative decoding and the number of branches of rake receiver.

Design of Effective Receiver in Wideband-CDMA Systems Using Turbo Code

  • Cho, Seong-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.158-163
    • /
    • 2006
  • In this paper, we considered the received signal of the wideband CDMA systems using turbo code in the multipath channel environments, and analyze the performance of the system. This study is to analyze the performance for the variable system bandwidth according to the number of branches of rake receiver by passing the received signal through a rake receiver with a turbo code in Rayleigh fading channel environments. For the design of receiver in wideband CDMA systems, we presented the efficient parameters for the number of iterative decoding and the number of branches of rake receiver.

Receiver Techniques for Ultra-wide-band Multiuser Systems over Fading Multipath Channels

  • Zhou, Xiaobo;Wang, Xiaodong
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 2003
  • We treat the problem of channel estimation and interference cancellation in multiuser ultra-wide-band (UWB) communication systems over multipath fading channels. The UWB system under consideration employs a random time-hopping impulse radio format. We develop a channel estimation method based on linear weighted algorithm. An iterative channel estimation and interference cancellation scheme is proposed to successively improve the receiver performance. We also consider systems employing multiple transmit and/or receive antennas. For systems with multiple receive antennas, we develop a diversity receiver for the wellseparated antennas. For systems with multiple transmit antennas, we propose to make use of Alamouti’s space-time transmission scheme, and develop the corresponding channel estimation and interference cancellation receiver techniques. Simulation results are provided to demonstrate the performance of various UWB receiver techniques developed in this paper.

Performance Improvement of Iterative Demodulation and Decoding for Spatially Coupling Data Transmission by Joint Sparse Graph

  • Liu, Zhengxuan;Kang, Guixia;Si, Zhongwei;Zhang, Ningbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5401-5421
    • /
    • 2016
  • Both low-density parity-check (LDPC) codes and the multiple access technique of spatially coupling data transmission (SCDT) can be expressed in bipartite graphs. To improve the performance of iterative demodulation and decoding for SCDT, a novel joint sparse graph (JSG) with SCDT and LDPC codes is constructed. Based on the JSG, an approach for iterative joint demodulation and decoding by belief propagation (BP) is presented as an exploration of the flooding schedule, and based on BP, density evolution equations are derived to analyze the performance of the iterative receiver. To accelerate the convergence speed and reduce the complexity of joint demodulation and decoding, a novel serial schedule is proposed. Numerical results show that the joint demodulation and decoding for SCDT based on JSG can significantly improve the system's performance, while roughly half of the iterations can be saved by using the proposed serial schedule.