• Title/Summary/Keyword: Iteration processes

Search Result 73, Processing Time 0.027 seconds

A Study On The Eigen-properties of A 2-D Square Waveguide by the Krylov-Schur Iteration Method (Krylov-Schur 순환법에 의한 2차원 사각도파관에서의 고유치 문제에 관한 연구)

  • Kim, Yeong Min;Kim, Dongchool;Lim, Jong Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.28-35
    • /
    • 2013
  • The Krylov-Schur algorithm has been applied to reveal the eigen-properties of the wave guide having the square cross section. The eigen-matrix equation has been constructed from FEM with the basis function of the tangential edge-vectors of the triangular element. This equation has been treated firstly with Arnoldi decomposition to obtain a upper Hessenberg matrix. The QR algorithm has been carried out to transform it into Schur form. The several eigen values satisfying the convergent condition have appeared in the diagonal components. The eigen-modes for them have been calculated from the inverse iteration method. The wanted eigen-pairs have been reordered in the leading principle sub-matrix of the Schur matrix. This sub-matrix has been deflated from the eigen-matrix equation for the subsequent search of other eigen-pairs. These processes have been conducted several times repeatedly. As a result, a few primary eigen-pairs of TE and TM modes have been obtained with sufficient reliability.

Edge-Preserving Iterative Reconstruction in Transmission Tomography Using Space-Variant Smoothing (투과 단층촬영에서 공간가변 평활화를 사용한 경계보존 반복연산 재구성)

  • Jung, Ji Eun;Ren, Xue;Lee, Soo-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.219-226
    • /
    • 2017
  • Penalized-likelihood (PL) reconstruction methods for transmission tomography are known to provide improved image quality for reduced dose level by efficiently smoothing out noise while preserving edges. Unfortunately, however, most of the edge-preserving penalty functions used in conventional PL methods contain at least one free parameter which controls the shape of a non-quadratic penalty function to adjust the sensitivity of edge preservation. In this work, to avoid difficulties in finding a proper value of the free parameter involved in a non-quadratic penalty function, we propose a new adaptive method of space-variant smoothing with a simple quadratic penalty function. In this method, the smoothing parameter is adaptively selected for each pixel location at each iteration by using the image roughness measured by a pixel-wise standard deviation image calculated from the previous iteration. The experimental results demonstrate that our new method not only preserves edges, but also suppresses noise well in monotonic regions without requiring additional processes to select free parameters that may otherwise be included in a non-quadratic penalty function.

Numerical model for local corrosion of steel reinforcement in reinforced concrete structure

  • Chen, Xuandong;Zhang, Qing;Chen, Ping;Liang, Qiuqun
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.385-393
    • /
    • 2021
  • Reinforcement corrosion is the main cause of the durability failure of reinforced concrete (RC) structure. In this paper, a three-dimensional (3D) numerical model of macro-cell corrosion is established to reveal the corrosion mechanisms of steel reinforcement in RC structure. Modified Direct Iteration Method (MDIM) is employed to solve the system of partial differential equations for reinforcement corrosion. Through the sensitivity analysis of electrochemical parameters, it is found that the average corrosion current density is more sensitive to the change of cathodic Tafel slope and anodic equilibrium potential, compared with the other electrochemical parameters. Furthermore, both the anode-to-cathode (A/C) ratio and the anodic length have significant influences on the average corrosion current density, especially when A/C ratio is less than 0.5 and anodic length is less than 35 mm. More importantly, it is demonstrated that the corrosion rate of semi-circumferential corrosion is much larger than that of circumferential corrosion for the same A/C ratio value. The simulation results can give a unique insight into understanding the detailed electrochemical corrosion processes of steel reinforcement in RC structure for application in service life prediction of RC structures in actual civil engineer.

A Study on the Development of a MOOC Design Model

  • LEE, Gayoung;KEUM, Sunyoung;KIM, Myungsun;CHOI, Yoomi;RHA, Ilju
    • Educational Technology International
    • /
    • v.17 no.1
    • /
    • pp.1-37
    • /
    • 2016
  • The purpose of this study was to develop a MOOC design model that would improve the current practice of MOOC development in Korea by specifying easy-to-use course development procedures and guiding strategies. Following Richey and Klein (2007)'s conceptual model development procedure, the first step was to perform critical review of relevant literature and observe typical MOOC development processes. As a result, the initial model was developed. The second step was to conduct the expert review with five educational technology and MOOC researchers to secure the internal validity of the model. Based on the experts' suggestions, the model was revised and once again reviewed by the same experts. This process resulted in the development of the 2nd version of model. The third step was to carry out external validation research in order to test the effectiveness, efficiency, and usability of the model. A basic model may be confirmed or corrected based on examination of its results. Consequently, the model was elaborated as the final model. In the final model, 6 procedural phases and 9 specific steps were included. The six procedural phases are: Analysis (1st Iteration), Design, Development (Course Development), Implementation, Evaluation, and Analysis (2nd Iteration), a slight variation of ADDIE model. The specific steps include: 1) Goal Setting, 2) Environment Analysis, 3) Content Design, 4) Style Design, 5) Course Development, 6) Implementation Plan, 7) Course Implementation, 8) Summative Evaluation, and 9) Need Reflection. The study concluded with suggestions for further research and application of the MOOC design model.

Development of Finite Element Program for Analyzing Springback Phenomena of Non-Isothermal Forming Processes for Aluminum Alloy Sheets (Part2 : Theory & Analysis) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석))

  • ;;R.H. Wagoner
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.710-717
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures for the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets (Part II : Theory & Analysis) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석))

  • Keum Y. T.;Han B. Y.;Wagoner R.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.13-20
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures fur the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

  • PDF

A Study on RUP based Component Quality Evaluation (RUP기반 컴포넌트 품질 평가에 관한 연구)

  • O, Gi-Seong;Ryu, Seong-Yeol
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.103-110
    • /
    • 2002
  • In component-Based Software Development, the quality of indivisual component is play an important role in quality decision of the whole software. So we need the practical strategy for component testing. In general, component testing can divide focus into producer position and consumer position. In this paper, because the consumer position uses output of the producer position, testing domain is deployed in the producer position. We propose RUP based five step testing processes for component quality evaluation and implements a case study of EJB environment for appling our testing process. This paper shows that proposed five step processes are applicable to component quality evaluation.

Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes

  • Tian, Li-Min;Hao, Ji-Ping
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1197-1214
    • /
    • 2015
  • There is a great difference in mechanical behavior between design model one-time loading and step-by-step construction process. This paper presents practical computational methods for simulating the structural behavior of long-span rigid steel structures during construction processes. It introduces the positioning principle of node rectification for installation which is especially suitable for rigid long-span steel structures. Novel improved nonlinear analytical methods, known as element birth and death of node rectification, are introduced based on several calculating methods, as well as a forward iteration of node rectification method. These methods proposed in this paper can solve the problem of element's 'floating' and can be easily incorporated in commercial finite element software. These proposed methods were eventually implemented in the computer simulation and analysis of the main stadium for the Universiade Sports Center during the construction process. The optimum construction scheme of the structure is determined by the improved algorithm and the computational results matched well with the measured values in the project, thus indicating that the novel nonlinear time-varying analysis approach is effective construction simulation of complex rigid long-span steel structures and provides useful reference for future design and construction.

An Optimal Scheduling Method based upon the Lower Bound Cost Estimation (하한비용 추정에 바탕을 둔 최적 스케쥴링기법)

  • 엄성용;전주식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.73-87
    • /
    • 1991
  • This paper presents a new approach to the scheduling problem in the high level synthesis. In this approach, iterative rescheduling processes starting with ASAP(As Soon As Possible) scheduling result are performed in a branch-and-bound manner so to arrive at the scheduling result of the lowest hardware cost under the given timing constraint. At each iteration step, only the selected nodes are considered for rescheduling, and the lower bound cost estimation is performed to avoid the unnecessary attempts to search for an optimal result. This branch-and-bound method turns out to be effective in pruning the search space, and thus reducing run time considerably in many cases.

  • PDF

Analysis of 3-D Superplastic Forming/Diffusion Bonding Process Using a Hierarchical Contact Searching Method(I) (계층적 접촉 탐색방법을 이용한 3-D 초소성 성형/확산접합의 공정설계(I))

  • Kang, Y.K.;Song, J.S.;Hong, S.S.;Kwon, Y.N.;Lee, J.H.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.138-143
    • /
    • 2007
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The coulomb friction law is used for interface friction between tool and material. Pressure-time relationship for a given optimal strain rate is calculated by stress and pressure values at the previous iteration step. In order to improve the contact searching, hierarchical search algorithm has been applied and implemented into the code. Various geometries including sandwich panel and 3 sheet shape for 3-D SPF/DB model are analyzed using the developed program. The validity fer the analysis is verified by comparison between analysis and results in the literature.