• Title/Summary/Keyword: Iteration processes

Search Result 73, Processing Time 0.028 seconds

ITERATION PROCESSES WITH ERRORS FOR NONLINEAR EQUATIONS INVOLVING $\alpha$-STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.349-365
    • /
    • 2001
  • Let X be a real Banach space and $A:X{\rightarrow}2^X$ be an $\alpha$-strongly accretive operator. It is proved that if the duality mapping J of X satisfies Condition (I) with additional conditions, then the Ishikawa and Mann iteration processes with errors converge strongly to the unique solution of operator equation $z{\in}Ax$. In addition, the convergence of the Ishikawa and Mann iteration processes with errors for $\alpha$-strongly pseudo-contractive operators is given.

  • PDF

ITERATION PROCESSES OF ASYMPTOTICALLY PSEUDO-CONTRACTIVE MAPPINGS IN BANACH SPACES

  • Park, Jong-Yeoul;Jeong, Jae-Ug
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.611-622
    • /
    • 2001
  • Some convergence theorems of modified Ishikawa and Mann iteration processes with errors for asymptotically pseudo-contractive and asymptotically nonexpansive mappings in Banach spaces are obtained. The results presented in this paper improve and extend the corresponding results in Liu [7] and Schu [10].

  • PDF

APPROXIMATION OF FIXED POINTS AND THE SOLUTION OF A NONLINEAR INTEGRAL EQUATION

  • Ali, Faeem;Ali, Javid;Rodriguez-Lopez, Rosana
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.869-885
    • /
    • 2021
  • In this article, we define Picard's three-step iteration process for the approximation of fixed points of Zamfirescu operators in an arbitrary Banach space. We prove a convergence result for Zamfirescu operator using the proposed iteration process. Further, we prove that Picard's three-step iteration process is almost T-stable and converges faster than all the known and leading iteration processes. To support our results, we furnish an illustrative numerical example. Finally, we apply the proposed iteration process to approximate the solution of a mixed Volterra-Fredholm functional nonlinear integral equation.

Strong Convergence of Modified Iteration Processes for Relatively Nonexpansive Mappings

  • Kim, Tae-Hwa;Lee, Hwa-Jung
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.685-703
    • /
    • 2008
  • Motivated and inspired by ideas due to Matsushida and Takahashi [J. Approx. Theory 134(2005), 257-266] and Martinez-Yanes and Xu [Nonlinear Anal. 64(2006), 2400-2411], we prove some strong convergence theorems of modified iteration processes for a pair (or finite family) of relatively nonexpansive mappings in Banach spaces, which improve and extend the corresponding results of Matsushida and Takahashi and Martinez-Yanes and Xu in Banach and Hilbert spaces, repectively.

Mann-Iteration process for the fixed point of strictly pseudocontractive mapping in some banach spaces

  • Park, Jong-An
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.333-337
    • /
    • 1994
  • Many authors[3][4][5] constructed and examined some processes for the fixed point of strictly pseudocontractive mapping in various Banach spaces. In fact the fixed point of strictly pseudocontractive mapping is the zero of strongly accretive operators. So the same processes are used for the both circumstances. Reich[3] proved that Mann-iteration precess can be applied to approximate the zero of strongly accretive operator in uniformly smooth Banach spaces. In the above paper he asked whether the fact can be extended to other Banach spaces the duals of which are not necessarily uniformly convex. Recently Schu[4] proved it for uniformly continuous strictly pseudocontractive mappings in smooth Banach spaces. In this paper we proved that Mann-iteration process can be applied to approximate the fixed point of strictly pseudocontractive mapping in certain Banach spaces.

  • PDF

NOOR ITERATIONS FOR NONLINEAR LIPSCHITZIAN STRONGLY ACCRETIVE MAPPINGS

  • Jeong, Jae-Ug;Noor, M.-Aslam;Rafig, A.
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.337-348
    • /
    • 2004
  • In this paper, we suggest and analyze Noor (three-step) iterative scheme for solving nonlinear strongly accretive operator equation Tχ = f. The results obtained in this paper represent an extension as well as refinement of previous known results.

  • PDF

CONVERGENCE THEOREMS FOR GENERALIZED α-NONEXPANSIVE MAPPINGS IN UNIFORMLY HYPERBOLIC SPACES

  • J. K. Kim;Samir Dashputre;Padmavati;Rashmi Verma
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • In this paper, we establish strong and ∆-convergence theorems for new iteration process namely S-R iteration process for a generalized α-nonexpansive mappings in a uniformly convex hyperbolic space and also we show that our iteration process is faster than other iteration processes appear in the current literature's. Our results extend the corresponding results of Ullah et al. [5], Imdad et al. [16] in the setting of uniformly convex hyperbolic spaces and many more in this direction.

A study on the accuracy of a numerical iteration for Markov processes by using reliability models (신뢰도 모형을 이용한 마코프 과정의 수치적 반복법의 정확성에 대한 연구)

  • Hyeonah Park;Seongryong Na
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.445-453
    • /
    • 2024
  • For Markov processes whose stationary probabilities are difficult to obtain in the analytical form, approximate solutions can be considered using numerical methods such as a matrix operation method or an iterative calculation method. In this paper we perform the study to verify the accuracy of a numerical iteration formula which calculate the stationary probabilities of Markov chains or processes. Especially, the convergence and accuracy of the numerical method are investigated by using Markov models for system availability. We compare the values of the system availability based on the numerical calculation and those based on the complicated but analytical solutions. We also calculate the iteration numbers necessary for the convergence of the numerical solutions. The accuracy and usefulness of the numerical iterative calculation method can be ascertained through this study.

STRONG CONVERGENCE THEOREM OF FIXED POINT FOR RELATIVELY ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Qin, Xiaolong;Kang, Shin Min;Cho, Sun Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.327-337
    • /
    • 2008
  • In this paper, we prove strong convergence theorems of Halpern iteration for relatively asymptotically nonexpansive mappings in the framework of Banach spaces. Our results extend and improve the recent ones announced by [C. Martinez-Yanes, H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), 2400-2411], [X. Qin, Y. Su, Strong convergence theorem for relatively nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 1958-1965] and many others.

  • PDF

NUMERICAL METHODS SOLVING THE SEMI-EXPLICIT DIFFERENTIAL-ALGEBRAIC EQUATIONS BY IMPLICIT MULTISTEP FIXED STEP SIZE METHODS

  • Kulikov, G.Yu.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.341-378
    • /
    • 1997
  • We consider three classes of numerical methods for solv-ing the semi-explicit differential-algebraic equations of index 1 and higher. These methods use implicit multistep fixed stepsize methods and several iterative processes including simple iteration, full a2nd modified Newton iteration. For these methods we prove convergence theorems and derive error estimates. We consider different ways of choosing initial approximations for these iterative methods and in-vestigate their efficiency in theory and practice.