• 제목/요약/키워드: Item-based Collaborative Recommendation

검색결과 122건 처리시간 0.023초

전자상거래에서 2-Way 혼합 협력적 필터링을 이용한 추천 시스템 (Recommendation System using 2-Way Hybrid Collaborative Filtering in E-Business)

  • 김용집;정경용;이정현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 컴퓨터소사이어티 추계학술대회논문집
    • /
    • pp.175-178
    • /
    • 2003
  • Two defects have been pointed out in existing user-based collaborative filtering such as sparsity and scalability, and the research has been also made progress, which tries to improve these defects using item-based collaborative filtering. Actually there were many results, but the problem of sparsity still remains because of being based on an explicit data. In addition, the issue has been pointed out. which attributes of item arenot reflected in the recommendation. This paper suggests a recommendation method using nave Bayesian algorithm in hybrid user and item-based collaborative filtering to improve above-mentioned defects of existing item-based collaborative filtering. This method generates a similarity table for each user and item, then it improves the accuracy of prediction and recommendation item using naive Bayesianalgorithm. It was compared and evaluated with existing item-based collaborative filtering technique to estimate the accuracy.

  • PDF

RFM을 활용한 추천시스템 효율화 연구 (A Study on Improving Efficiency of Recommendation System Using RFM)

  • 정소라;진서훈
    • 대한설비관리학회지
    • /
    • 제23권4호
    • /
    • pp.57-64
    • /
    • 2018
  • User-based collaborative filtering is a method of recommending an item to a user based on the preference of the neighbor users who have similar purchasing history to the target user. User-based collaborative filtering is based on the fact that users are strongly influenced by the opinions of other users with similar interests. Item-based collaborative filtering is a method of recommending an item by comparing the similarity of the user's previously preferred items. In this study, we create a recommendation model using user-based collaborative filtering and item-based collaborative filtering with consumer's consumption data. Collaborative filtering is performed by using RFM (recency, frequency, and monetary) technique with purchasing data to recommend items with high purchase potential. We compared the performance of the recommendation system with the purchase amount and the performance when applying the RFM method. The performance of recommendation system using RFM technique is better.

A Recommendation System for Repetitively Purchasing Items in E-commerce Based on Collaborative Filtering and Association Rules

  • Yoon Kyoung Choi;Sung Kwon Kim
    • Journal of Internet Technology
    • /
    • 제19권6호
    • /
    • pp.1691-1698
    • /
    • 2018
  • In this paper, we are to address the problem of item recommendations to users in shopping malls selling several different kinds of items, e.g., daily necessities such as cosmetics, detergent, and food ingredients. Most of current recommendation algorithms are developed for sites selling only one kind of items, e.g., music or movies. To devise efficient recommendation algorithms suitable for repetitively purchasing items, we give a method to implicitly assign ratings for these items by making use of repetitive purchase counts, and then use these ratings for the purpose of recommendation prediction with the help of user-based collaborative filtering and item-based collaborative filtering algorithms. We also propose associate item-based recommendation algorithm. Items are called associate items if they are frequently bought by users at the same time. If a user is to buy some item, it is reasonable to recommend some of its associate items. We implement user-based (item-based) collaborative filtering algorithm and associate item-based algorithm, and compare these three algorithms in view of the recommendation hit ratio, prediction performance, and recommendation coverage, along with computation time.

A Social Travel Recommendation System using Item-based collaborative filtering

  • 김대호;송제인;유소엽;정옥란
    • 인터넷정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.7-14
    • /
    • 2018
  • As SNS(Social Network Service) becomes a part of our life, new information can be derived through various information provided by SNS. Through the public timeline analysis of SNS, we can extract the latest tour trends for the public and the intimacy through the social relationship analysis in the SNS. The extracted intimacy can also be used to make the personalized recommendation by adding the weights to friends with high intimacy. We apply SNS elements such as analyzed latest trends and intimacy to item-based collaborative filtering techniques to achieve better accuracy and satisfaction than existing travel recommendation services in a new way. In this paper, we propose a social travel recommendation system using item - based collaborative filtering.

무비렌즈 데이터를 이용한 하이브리드 추천 시스템에 대한 실증 연구 (An Empirical Study on Hybrid Recommendation System Using Movie Lens Data)

  • 김동욱;김성근;강주영
    • 한국빅데이터학회지
    • /
    • 제2권1호
    • /
    • pp.41-48
    • /
    • 2017
  • 최근 추천 시스템의 인기와 함께 추천 시스템의 알고리즘의 성능에 대한 평가가 중요해 졌다. 본 연구는 영화 데이터에서 다양한 알고리즘 중 어떤 알고리즘의 효과적인지 판단하기 위하여 모델링과 RMSE를 통한 모델 검증을 하였다. 본 연구의 데이터는 무비렌즈의 평가 데이터 10만건을 활용하여 피어슨 상관계수를 활용한 사용자 기반 협업 필터링, 코사인 상관계수를 활용한 아이템 기반 협업 필터링 그리고 특이 값분해를 활용한 아이템 기반 협업 필터링 모델을 만들었다. 세가지 추천 모델로 평점을 예측한 결과 사용자 기반 협업 필터링보다 아이템 기반 협업 필터링의 정확도가 월등히 높은 것을 확인했고, 행렬 분해를 사용했을 때 더 정확한 추천을 할 수 있었다.

  • PDF

A Model-based Collaborative Filtering Through Regularized Discriminant Analysis Using Market Basket Data

  • Lee, Jong-Seok;Jun, Chi-Hyuck;Lee, Jae-Wook;Kim, Soo-Young
    • Management Science and Financial Engineering
    • /
    • 제12권2호
    • /
    • pp.71-85
    • /
    • 2006
  • Collaborative filtering, among other recommender systems, has been known as the most successful recommendation technique. However, it requires the user-item rating data, which may not be easily available. As an alternative, some collaborative filtering algorithms have been developed recently by utilizing the market basket data in the form of the binary user-item matrix. Viewing the recommendation scheme as a two-class classification problem, we proposed a new collaborative filtering scheme using a regularized discriminant analysis applied to the binary user-item data. The proposed discriminant model was built in terms of the major principal components and was used for predicting the probability of purchasing a particular item by an active user. The proposed scheme was illustrated with two modified real data sets and its performance was compared with the existing user-based approach in terms of the recommendation precision.

적응형 군집화 기반 확장 용이한 협업 필터링 기법 (Scalable Collaborative Filtering Technique based on Adaptive Clustering)

  • 이오준;홍민성;이원진;이재동
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.73-92
    • /
    • 2014
  • 기존 협업 필터링 기법은 사용자들의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 구성하고, 이를 이용해 예측된 사용자의 특정 아이템에 대한 선호도를 기반으로 추천을 수행한다. 이로 인해, 사용자 선호도 정보가 부족하게 되면, 유사 아이템 사용자 집합의 신뢰도가 낮아지고, 추천 서비스의 신뢰도 또한 따라서 낮아진다. 또한, 서비스의 규모가 커질수록, 유사 아이템, 사용자 집합의 생성에 걸리는 시간은 기하급수적으로 증가하고 추천서비스의 응답시간 또한 그에 따라 증가하게 된다. 위와 같은 문제점을 해결하기 위해 본 논문에서는 적응형 군집화 기법을 제안하고 이를 적용한 협업 필터링 기법을 제안하고 있다. 이 기법은 크게 네 가지 방법으로 이루어진다. 첫째, 사용자와 아이템의 특성 벡터를 기반으로 사용자와 아이템 각각을 군집화 하여, 기존 협업 필터링 기법에서 유사 아이템, 사용자 집합을 생성하는데 소요되는 시간을 절약하며, 사용자 선호도 정보만을 이용한 부분 집합 생성보다 추천의 신뢰도를 높이고, 초기 평가 문제와 초기 이용자 문제를 일부 해소한다. 둘째, 미리 구성된 사용자와 아이템의 군집을 기반으로 군집간의 선호도를 이용해 추천을 수행한다. 사용자가 속한 군집의 선호도가 높은 순서대로 아이템 군집을 조회하여 사용자에게 제공할 아이템 목록을 구성하여, 추천 시스템의 부하 대부분을 모델 생성 단계에서 부담하고 실제 수행 시 부하를 최소화한다. 셋째, 누락된 사용자 선호도 정보를 사용자와 아이템 군집을 이용하여 예측함으로써 협업 필터링 추천 기법의 사용자 선호도 정보 희박성으로 인한 문제를 해소한다. 넷째, 사용자와 아이템의 특성 벡터를 사용자의 피드백에 따라 학습시켜 아이템과 사용자의 정성적 특성 정량화의 어려움을 해결한다. 본 연구의 검증은 기존에 제안되었던 하이브리드 필터링 기법들과의 성능 비교를 통해 이루어졌으며, 평가 방법으로는 평균 절대 오차와 응답 시간을 이용하였다.

A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection

  • Yu, Hongtao;Sun, Lijun;Zhang, Fuzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4684-4705
    • /
    • 2019
  • Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.

지수적 가중치를 적용한 협력적 상품추천시스템 (A Recommendation System of Exponentially Weighted Collaborative Filtering for Products in Electronic Commerce)

  • 이경희;한정혜;임춘성
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.625-632
    • /
    • 2001
  • 전자상점에서 이루어지는 고객의 구매패턴이 온라인 상에서 데이터베이스화되어, 이를 통하여 고객의 취향에 맞는 상품을 제공할 수 있는 많은 알고리즘이 연구되고 있다. 이러한 알고리즘은 전자상점에서 고객의 개별특성을 고려한 상품을 제공하기 위하여, 고객정보 데이터베이스와 거래정보 데이터베이스로부터 연관규칙 등을 추출하여 사용한다. 그러나 시간의 흐름에 민감한 계절상품이나 특선상품과 같이 전자상점의 거래량에 크게 직결될 수 있는 상품에도 기존의 시간을 고려하지 않은 알고리즘을 적용한다면 추천성공률이 떨어질 것이다. 따라서 본 논문에서는 시간의 영향을 많이 받는 상품추천을 위하여, 최근 전자상점 추천시스템으로 효과적인 아이템 기반 협력알고리즘에 지수적 가중치를 적용한 협력적 여과추천(EWCFR) 알고리즘을 제안한다. 또한 이러한 추천시스템이 대용량의 고객데이터와 상품데이터에 대한 연산을 수행하고 다수의 고객에게 실시간으로 서비스를 제공하여야 하므로, XML기반의 MMDB를 활용한 전자상거래 시스템과 알고리즘을 제안한다.

  • PDF

협업 필터링 기반 상품 추천에서의 평가 횟수와 성능 (Number of Ratings and Performance in Collaborative Filtering-based Product Recommendation)

  • 이홍주;박성주;김종우
    • 한국경영과학회지
    • /
    • 제31권2호
    • /
    • pp.27-39
    • /
    • 2006
  • The Collaborative Filtering (CF) is one of the popular techniques for personalization in e-commerce storefronts. For CF-based recommendation, every customer needs to provide subjective evaluation ratings for some products based on his/her preference. Also, if an e-commerce site recommends a new product, some customers should rate it. However, there is no in-depth investigation on the impacts on recommendation performance of two number of ratings, i.e. the number of ratings of an individual customer and the number of ratings of an item, even though these are important factors to determine performance of CF methods. In this study, using publicly available EachMovie data set, we empirically investigate the relationships between the two number of ratings and the performance of CF. For the purpose, three analyses were executed. The first and second analyses were performed to investigate the relationship between the number of ratings of a particular customer and the recommendation performance of CF. In the third analysis, we investigate the relationship between the number of ratings on a particular item and the recommendation performance of CF. From these experiments, we can find that there are thresholds in terms of the number of ratings below which the recommendation performances increase monotonically. That is, the number of ratings of a customer and the number of ratings on an item are critical to the recommendation performance of CF when the number of ratings is less than the thresholds, but the value of the ratings decreases after the numbers of ratings pass the thresholds. The results of the experiments provide insight to making operational decisions concerning collaborative filtering in practice.