• Title/Summary/Keyword: Isothermal extrusion

Search Result 28, Processing Time 0.024 seconds

Characteristics on the Hot Extrusion of Semi-Solid Al-Zn-Mg Alloy (반용융 Al-Zn-Mg합금의 고온 압출 시 특성 평가)

  • Cho, Kuk-Rae;Yeom, Jong-Taek;Shim, Sung-Yong;Lim, Su-Gun;Park, Nho-Kwang;Kim, Jeoung-Han
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.391-395
    • /
    • 2007
  • Semi-solid Al-Zn-Mg alloys were produced by using a cooling plate method in order to investigate the extrudability. Al melt was poured on cooling plate which was adjusted at $60^{\circ}$ with respect to the horizontal plane, and the melt was cooled by water circulation underneath. Obtained Semi-solid feedstock has globular microstructure but also contains considerable amount of gas pore. Due to the pore, tensile elongation of the semi-solid feedstock was very low and it doesn't show yield point phenomenon. Isothermal hot extrusion was carried out using at $400^{\circ}C$ with a ram speed of 1mm/sec and an extrusion ratio of 25:1. The extruded bar show noticeably improved tensile ductility and strength because pore volume fraction decreased from 5% to 0.8% after extrusion. Mechanical properties of the semi-solid extruded bar were compared with that of commercial casting alloy.

Finite Element Analysis of Rubber Extrusion Forming Process (고무 압출성형 공정에 대한 유한요소 해석)

  • Ha, Yeon-Sik;Cho, Jin-Rae;Kim, Tae-Ho;Kim, Jun-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.762-767
    • /
    • 2007
  • As a macromolecule material, melted rubber flow shows characteristics of shear thinning fluid. The dynamic viscosity of this rubber fluid is influenced by temperature and shear strain rate. In this study, the numerical simulation of rubber extrusion forming process has been performed using commercial CFD code, Polyflow. Power-law model considering the effect of shear rate is used for the computer simulation of this non-Newyonian flow. Also Non-isothermal behavior is considered as Arrhenius-law model. Distributions of velocity and temperature are predicted through the simulation.

  • PDF

Finite Element Simulation of a Porthole Die Extrusion Process for Manufacturing Aluminum Heat Radiation Pipe (알루미늄 방열 파이프의 생산 목적의 포트홀 금형 압출공정의 유한요소해석)

  • Lee, M.C.;Cho, J.H.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.458-461
    • /
    • 2008
  • We carry out non-steady state finite element simulation of a porthole extrusion process for manufacturing a radiation pipe under isothermal assumption. It is assumed that welding takes place at the moment that the material contacts the plane of symmetry. Welding phenomena are revealed by observing the contacting mechanism of the material passed through the portholes. It is emphasized that mesh density control and intelligent remeshing during welding process govern the solution accuracy and the program applicability. AFDEX 3D is employed.

  • PDF

Effect of Scancium Content on The Hot Extrusion of Al-Zn-Mg-(Sc) Alloy (Al-Zn-Mg-(Sc) 합금의 고온가공성에 미치는 Sc 함량의 영향)

  • Kim, Jin-Ho;Kim, Jeoung-Han;Yeom, Jong-Taek;Lee, Dong-Geun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.184-187
    • /
    • 2006
  • The effects of scandium content and extrusion parameters on Al-Zn-Mg-(Sc) alloys were examined. Three kinds of Al-Zn-Mg-(Sc) alloys with up to 0.30 wt.% Sc were prepared. The compression test was conducted to investigate the microstructure evolution during hot deformation. Despite of microstructural differences in the alloys, deformation behaviors were very similar. After extrusion at $350^{\circ}C$ with the ram speed of 15mm/sec, AA7075 showed a moderate surface quality compared with other Sc containing alloys, which was attributed to low flow stresses. AA7075 showed coarse-grained bands in surface region. With the ram speed of 1.5mm/sec at $350^{\circ}C$, the surface quality of the alloys was sound due to low friction stresses and deformation heating. As the Sc content increased, tensile strengths and elongations at room temperature improved.

  • PDF

Analysis of the Aluminum Extrusion Process Equipped with the Continuous Heat Treatment System

  • Lee, Bong-Sang;Cho, Young-Hee;Lee, Jeong-Min;Lim, Hak-Jin;Koo, Jar-Myung;Yoon, Bo-Hee;Lee, Tae-Hyuk;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2011
  • In this study, the heat flow of the plant scale aluminum extrusion process was investigated to establish optimum continuous heat treatment conditions. During the extrusion of 6061 aluminum alloy, processing parameters such as the extrusion pressure, speed and temperature histories of billets were logged as a function of time. The surface temperature of the billets increased at constant ram speed, while it decreased with decreases of the ram speed. In order to maintain the billet temperature within a solutionizing temperature range prior to the succeeding water quenching step, the ram speed or the temperature of the blower should be controlled. The temperature histories of the billets during the extrusion and hot air blowing processes were successfully simulated by using the velocity boundary model in ANSYS CFX. The methodology to design an optimum process by using a commercial simulation program is described in this study on the basis of the metallurgical validation results of the microstructural observation of the extrudates. The developed model allowed the advantages of taking into account the motion of the extrudate coupled with the temperature change based on empirical data. Calculations were made for the extrudate passing through the isothermal chamber maintained at appropriate temperature. It was confirmed that the continuous heat treatment system is beneficial to the productivity enhancement of the commercial aluminum extrusion industry.

Die Design of Hot Extrusion for Hexagonal Insert (Hexagonal 인서트용 열간압출 금형설계)

  • 권혁홍;이정로
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • The use of hexagonal ceramic inserts for copper extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper the data on the loading of the tools is determined from a commercial FEM package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads.

Coarsening of Dispersoid and Matrix Phase in Mechanically Alloyed ODS NiAl (기계적 합금화된 ODS NiAl에서 분산상 및 기지상의 조대화 거동)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • NiAl powders containing oxide dispersoids have been produced by mechanical alloying process in a controlled atmosphere using high energy attrition mill. The powders have been consolidated by hot extrusion and hot pressing followed by isothermal annealing to induce microstructure coarsening to improve high temperature properties. Grain growth and dispersoid coarsening kinetics have been investigated as functions of annealing time and temperature. Coarsening of dispersion strengthen NiAl and dispersoid has been discussed. Some clues of secondary recrystallization have been investigated. Mechanical property measurements have been also made and correlated with the microstructures.

  • PDF

Development of Thixoextrusion Process for Light Alloys - Part 1. Microstructural Control of Light Alloys for Thixoextrusion (경량합금 반용융 압출 기술 개발 - Part 1. 반융용 압출을 위한 조직제어)

  • Kim, Shae-K.;Yoon, Young-Ok;Jang, Dong-In;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.211-216
    • /
    • 2006
  • The study for thixoextrusion process of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy was carried out with respect to reheating rate, isothermal holding temperature and time with an emphasis to the effect of homogenization on thixotropic micro-structures during the partial remelting, especially in the low liquid fraction ($f_L<0.2$). The liquid fraction and average grain size with respect to reheating profile such as reheating rate, isothermal holding temperature and time were almost uniform. It is considered very useful for thixoextrusion in terms of process control such as billet temperature control and actual extrusion time. Micro-structural controls of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy before and after homogenization were available and thixotropic microstructures were obtained in both specimens.

Effect of Ca addition on the microstructure and mechanical properties of extruded AZ31 alloy (마그네슘합금 AZ31 압출재의 기계적특성에 미치는 Ca의 효과)

  • Kim, Jeoung-Han;Kang, Na-Eun;Lee, Sang-Bok;Yim, Chang-Dong;You, Bong-Sun;Kim, Byoung-Kee
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.281-284
    • /
    • 2007
  • The effect of Ca addition on the microstructure evolution and deformation behavior of AZ31 magnesium alloy produced by hot extrusion was investigated. For this purpose, Ca was added into AZ31 melts to the level of 0.7 and 2.0 wt.% Ca. Then, AZ31 base alloy and Ca modified AZ31 alloys were extruded at $383^{\circ}C$. Ca added alloys showed finer grain size and increased hardness value rather than AZ31 base alloy. After isothermal hot compression, the shape of tested specimen exhibited a noticeable anisotropy due to the crystallographic texture effect. The ratio of major and minor axes of ovality was not directly related to test condition and Ca amount. Flow stress level increases with the increase of Ca addition at temperature below $300^{\circ}C$ because of fine microstructure. However, at high temperature and low strain rate region ($400^{\circ}C$ and $10^{-3}s^{-1}$), reverse tendency was observed since main deformation mechanism changes from dislocation slip to grain boundary sliding or diffusional process at high temperature.

  • PDF

Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming (체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰)

  • Joun, M.S.;Moon, H.K.;Hwang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF