• Title/Summary/Keyword: Isothermal Process

Search Result 341, Processing Time 0.03 seconds

A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure (기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성)

  • Park, Heung-Il;Kim, Chang-Up;Huh, Bo-Young;Lee, Sung-Youl;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF

SULFIDATION PROCESSING AND Cr ADDITION TO IMPROVE OXIDATION RESISTANCE OF Ti-Al INTERMETALLIC COMPOUNDS AT ELEVATED TEMPERATURES

  • Narita, Toshio;Izumi, Takeshi;Yatagai, Mamoru;Yoshioka, Takayuki
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.05a
    • /
    • pp.5-5
    • /
    • 1999
  • A novel process is proposed to improve oxidation resistance of Ti-Al intermetallic compounds at elevated temperatures by both Cr addition and pre-sulfidation, where TiAl alloys withlor without Cr addition were sulfidized at 1173K for 86.4ks at a 1.3 Pa sulfur partial pressure in a $H_2-H_2S$ gas mixture. The pre-sulfidation treatment formed a thin Cr-Al alloy layer as well as 7~10 micrometer $TiAl_3$ and $TiAl_2$ layer, due to selective sulfidation of Ti. Oxidation resistance of the pre-sulfidation processed TiAl 4Cr alloy was examined under isothermal and heat cycle conditions between room temperature and 1173K in air. Changes in $TiAl_3$ into $TiAl_2$ and then TiAl phases as well as their effect on oxidation behavior were investigated and compared with the oxidation behavior of the TiAl-4Cr alloy as TiAl and pre-sulfidation processed TiAl aHoys. After oxidation for up to 2.7Ms a protective $Al_2O_3$ scale was formed, and the pre-formed $TiAl_3$ changed into $TiAl_2$ and the $Al_2Cr$ phase changed into a CrAlTi phase between the $Al_2O_3$ scale and $TiAl_2$ layer. The pre-sulfidation processed TiAl-4Cr alloy had very good oxidation resistance for longer times, up to 2.7 Ms, in contrast to those observed for the pre-sulfidation processed TiAl alloy where localized oxidation occurred after 81 Oks and both the TiAl and TiAl-4Cr alloys themselves corroded rapidly from the initial stage of oxidation

  • PDF

Characterization of Thermal Properties of Concrte and Temperature Prediction Model (콘크리트재료의 열특성 및 수화열 해석)

  • 양성철
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.121-132
    • /
    • 1997
  • The thermal behavior of' concrete can be ch;lracterized from a knowledge of concrete ternperatu1.e at early ages, environmental conditions, and cement hydration in the mixture. 'l'o account for thost. interactions, a computer model was developed for prwlicting the temperature pr.ol'ile in hnrdcning c o n c r c t ~ st.r~icture in terms of material and tmvironmcntal factors. The cerncnt hydration cha~.acteristics such as the activating energy, total heat 1ihei.atr.d. anti th\ulcorner degree of' hydration. can represent the internal heat gc,neration. In this study. th(> activating c1ncrgy and the tlcgree of' hydration curve were determined well fmm the rnortn~. compressive strength tests while total amount of heat liberated was determined by tht> isothermal calorimctcr method. The main purpose of' this study is to correlate measured tt>mperaturr distributions in a concrete st1,ucture during thc hardening process with the ~ c s u l t s computed f'ro~n theoretical considrl.ations. Using twodimensional heat transfer model, first. the importance of several parameters will be identified by a parametric analysis. Then, the tcmpcmture distribution of thc cylindrical concrete specimen in the laboratory was mensuwti and compared with that yielded by thc theoretical considel.ations.

Moisture Gettering by Porous Alumina Films on Textured Silicon Wafer (실리콘 표면에 증착된 다공성 알루미나의 수분 흡착 거동)

  • Lim, Hyo Ryoung;Eom, Nu Si A;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.401-406
    • /
    • 2015
  • Getter is a class of materials used in absorbing gases such as hydrogen and moisture in microelectronics or semiconductor devices to operate properly. In this study, we developed a new device structure consisting of porous anodized alumina films on textured silicon wafer, which have cost efficiency in materials and processing aspects. Anodic aluminum oxide (AAO) with controlled pore sizes can be applied to a high-efficiency moisture absorber due to the high surface area and OH- saturated surface property. The moisture sorption capacity was 2.02% (RH=35%), obtained by analyzing isothermal adsorption/desorption curve.

Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1

  • Vo, Hoang Tung;Cho, Jae Youl;Choi, Yong-Eui;Choi, Yong-Soon;Jeong, Yeon-Ho
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.304-313
    • /
    • 2015
  • Background: Ginsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1. Methods: Ginsenoside Rb1 was heated using an isothermal machine at $80^{\circ}C$ and $100^{\circ}C$ and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation. Results: The rate constants were $0.013h^{-1}$ and $0.073h^{-1}$ for the degradation of ginsenosides Rb1 and Rg3 at $80^{\circ}C$, respectively. The corresponding rate constants at $100^{\circ}C$ were $0.045h^{-1}$ and $0.155h^{-1}$. The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value. Conclusion: The optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below $180^{\circ}C$, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min.

Fabrication and Characterization of C/SiC Composite by Electron Beam Curing (전자선 가교 방법을 이용한 탄소/탄화규소 복합재 제조 및 특성)

  • Shin, Jin-Wook;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.575-580
    • /
    • 2009
  • Carbon fabric-reinforced silicon carbide composites (C/SiC) have attracted a considerable attention for high temperature structural application because of their outstanding oxidation resistance property and thermal shock resistance. In this study, we reported on the preparation of C/SiC composites by the polymer impregnation and pyrolysis (PIP) method. For this, polycarbosilane solution was impregnated into the carbon fabric and then cured by electron beam irradiation under argon atmosphere. Afterwards, the cured composite was pyrolyzed at $1300^{\circ}C$ for 1 h under argon atmosphere to produce the C/SiC composite. The porosity and density of the C/SiC composite were 13.5% and $2.44\;g/cm^3$, respectively, when the impregnation of the carbon fabric with the 30 wt% polycarbosilane solution conducted four times. In addition, in the isothermal experiment at $1500\;^{\circ}C$ in air for 5 h, the 95.9 wt% of the C/SiC composite was remained, indicating that the prepared C/SiC composite has a outstanding oxidation resistance.

Recrystallized poly-Si TFTs on metal substrate (금속기판에서 재결정화된 규소 박막 트랜지스터)

  • 이준신
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.30-37
    • /
    • 1996
  • Previously, crystallization of a-Si:H films on glass substrates were limited to anneal temperature below 600.deg. C, over 10 hours to avoid glass shrinkage. Our study indicates that the crystallization is strongly influenced by anneal temperature and weakly affected by anneal duration time. Because of the high temperature process and nonconducting substrate requirements for poly-Si TFTs, the employed substrates were limited to quartz, sapphire, and oxidized Si wafer. We report on poly-Si TFT's using high temperature anneal on a Si:H/Mo structures. The metal Mo substrate was stable enough to allow 1000.deg. C anneal. A novel TFT fabrication was achieved by using part of the Mo substrate as drain and source ohmic contact electrode. The as-grown a-Si:H TFT was compared to anneal treated poly-Si TFT'S. Defect induced trap states of TFT's were examined using the thermally stimulated current (TSC) method. In some case, the poly-Si grain boundaries were passivated by hydrogen. A-SI:H and poly-Si TFT characteristics were investigated using an inverted staggered type TFT. The poly -Si films were achieved by various anneal techniques; isothermal, RTA, and excimer laser anneal. The TFT on as grown a-Si:H exhibited a low field effect mobility, transconductance, and high gate threshold voltage. Some films were annealed at temperatures from 200 to >$1000^{\circ}C$ The TFT on poly-Si showed an improved $I_on$$I_off$ ratio of $10_6$, reduced gate threshold voltage, and increased field effect mobility by three orders. Inverter operation was examined to verify logic circuit application using the poly Si TFTs.

  • PDF

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

Curing of Epoxy Resin with Natural Cashew Nut Shell Liquids (천연 캐슈너트 외피유를 이용한 에폭시 수지의 가교)

  • Nah, Chang-Woon;Go, Jin-Hwan;Byun, Joon-Hyung;Hwang, Byung-Sun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The cure behavior of epoxy resin with a conventional amide-type hardener(HD) was investigated in the presence of castor oil(CO), cashew nut shell liquid(CNSL) and CNSL-formaldehyde resin(CFR) by using a dynamic differential scanning calorimetry(DSC). The activation energy of curing reaction was also calculated based on the non-isothermal DSC thermograms at various heating rates. An one-stage curing was noted in the case of epoxy resin filled with CO, while the epoxy resin with CNSL and CFR showed a two-stage curing process. A competitive cure reaction was noted for the epoxy resin/CNSL(or CFR)/HD blends. In the absence of HD, the CFR showed lower values of curing enthalpy than that of CNSL. The activation energy of epoxy resin curing increased with increasing the CNSL and CFR loading.

Effect of stress relief heat treatment on the residual stress and hardness of additively manufactured Ti-6Al-4V alloy (응력제거 열처리 공정조건이 적층제조한 Ti-6Al-4V 합금의 잔류응력 및 경도에 미치는 영향)

  • Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.282-287
    • /
    • 2023
  • The effect of stress relief heat treatment temperature and duration time on the microstructure, residual stress and Vickers hardness of additively manufactured Ti-6Al-4V alloy using laser powder bed fusion process was clarified. As a result of stress relief heat treatment for 240 minutes at 823 K and 60 minutes or more at 873 K, residual stress was decreased less than 30 MPa without grain growth and phase transformation which causes dimensional distortion and deterioration of mechanical properties. In addition, hardness was increased with increasing heat treatment temperature and duration time. It was deduced that the refinement of acicular martensitic α' phase due to the increasing duration time of isothermal heat treatment at 773~873 K, which was not detected by XRD and phase map analysis using SEM-EBSD, probably increases the hardness.