전자선 가교 방법을 이용한 탄소/탄화규소 복합재 제조 및 특성

Fabrication and Characterization of C/SiC Composite by Electron Beam Curing

  • 신진욱 (한국원자력연구원 방사선공업환경연구부) ;
  • 전준표 (한국원자력연구원 방사선공업환경연구부) ;
  • 강필현 (한국원자력연구원 방사선공업환경연구부)
  • Shin, Jin-Wook (Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute) ;
  • Jeun, Joon-Pyo (Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute) ;
  • Kang, Phil-Hyun (Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute)
  • 발행 : 2009.11.25

초록

폴리카보실란에 탄소직물을 보강제로 이용하여 제조한 탄소/탄화규소 복합재는 좋은 내산화 특성과 열 충격에 강한 특성으로 인해 높은 온도의 구조체에 적용되고 있다. 본 연구에서는 고분자 함침 열분해법을 이용하여 탄소직물에 폴리카보실란 용액을 함침한 후, 전자선을 이용하여 가교하고, 열분해 과정을 통해 탄소/탄화규소 복합재로 제조하였다. 실험 결과 복합재 시료의 공극률과 밀도는 각각 13.5%와 $2.44\;g/cm^3$을 나타냈고, 내산화 특성은 지속적인 고온의 산화 분위기에서 95.9%의 잔류량을 나타내어 본 연구에서 제조한 탄소/탄화규소 복합재의 우수한 내산화 특성을 확인하였다.

Carbon fabric-reinforced silicon carbide composites (C/SiC) have attracted a considerable attention for high temperature structural application because of their outstanding oxidation resistance property and thermal shock resistance. In this study, we reported on the preparation of C/SiC composites by the polymer impregnation and pyrolysis (PIP) method. For this, polycarbosilane solution was impregnated into the carbon fabric and then cured by electron beam irradiation under argon atmosphere. Afterwards, the cured composite was pyrolyzed at $1300^{\circ}C$ for 1 h under argon atmosphere to produce the C/SiC composite. The porosity and density of the C/SiC composite were 13.5% and $2.44\;g/cm^3$, respectively, when the impregnation of the carbon fabric with the 30 wt% polycarbosilane solution conducted four times. In addition, in the isothermal experiment at $1500\;^{\circ}C$ in air for 5 h, the 95.9 wt% of the C/SiC composite was remained, indicating that the prepared C/SiC composite has a outstanding oxidation resistance.

키워드

참고문헌

  1. J. D. Buckley, Ceram. Bull., 67, 364 (1988)
  2. K. Masao, T. Shin, A. K. Kuniyuki, N. U. Nobutaka, and K. Yoshinari, Energy Convers. Manag., 42, 1977 (2001) https://doi.org/10.1016/S0196-8904(01)00055-3
  3. J. E. Sheehan, K. W. Buesking, and B. J. Sullivan, Annu. Rev. Mater. Sci., 24, 19 (1994) https://doi.org/10.1146/annurev.ms.24.080194.000315
  4. M. E. Westwood, J. D. Webster, R. J. Day, F. H. Hayes, and R. Taylor, J. Mater. Sci., 31, 1389 (1996) https://doi.org/10.1007/BF00357844
  5. J. F. Huang, H. J. Li, X. R. Zeng, and K. Z. Li, Ceram. Int., 32, 417 (2006) https://doi.org/10.1016/j.ceramint.2005.03.018
  6. N. S. Jacobson and D. M. Curry, Carbon, 44, 1142 (2006) https://doi.org/10.1016/j.carbon.2005.11.013
  7. J. Greim, K. Hunold, K. A. Schwetz, and A. Lipp, Adv. Eng. Ceram., 46, 173 (1990)
  8. J. F. Lynch, E. E. Ungar, and W. H. Duckworth, Am., Ceram. Soc. Bull., 40, 444 (1961)
  9. A. B. Andrew, E. H. Greg, G. F. William, M. D. Douglas, and W. Hsin, Intermetallics, 16, 854 (2008) https://doi.org/10.1016/j.intermet.2008.03.010
  10. L. Guofeng, Q. Shengru, Z. Chengyu, H. Juntao, J. Dechang, and Z. Yuebing, Composite A, 39, 1467 (2008) https://doi.org/10.1016/j.compositesa.2008.05.009
  11. Z. Jiehua, Q. Shengru, L. Grofeng, Z. Yuebing, H. Wenbo, and J. Dechang, J. Mater. Process. Tech., 190, 358 (2007) https://doi.org/10.1016/j.jmatprotec.2007.02.008
  12. J. Ke, H. C. Zhao, S. M. Qing, and W. Z. Wen, Mater. Sci. Eng. A, 390, 154 (2005) https://doi.org/10.1016/j.msea.2004.07.064
  13. M. Sasaki and T. Hirai, J. Eur. Ceram. Soc., 14, 257 (1994) https://doi.org/10.1016/0955-2219(94)90094-9
  14. T. Noda, H. Araki, and H. Suzuki, J. Nucl. Mater., 212, 823 (1994) https://doi.org/10.1016/0022-3115(94)90170-8
  15. M. Z. Berbon, D. R. Dietrith, and D. B. Marshall, J. Am. Ceram. Soc., 84, 2229 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00993.x
  16. K. Okada, H. Kato, and K. Nakajima, J. Am. Ceram. Soc., 77, 1691 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb09782.x
  17. M. Takeda, Y. Imai, H. Ichikawa, N. Kasai, T. Seguchi, and K. Okamura, Comp. Sci. Tech., 59, 739 (1999)
  18. A. Idesaki, M. Narisawa, K. Okamura, M. Sugimoto, Y. Morita, T. Seguchi, and M. Itoh, Rad. Phys. Chem., 60, 483 (2001) https://doi.org/10.1016/S0969-806X(00)00394-7
  19. P. H. Kang, J. P. Jeun, D. K. Seo, and Y. C. Nho, Rad. Phys. Chem., 78, 493 (2009) https://doi.org/10.1016/j.radphyschem.2009.03.033
  20. P. H. Kang and H. S. Yang, Korean J. Chem. Eng., 15, 580 (1998) https://doi.org/10.1007/BF02698981
  21. K. Kawamura, M. Ono, and K. Okazaki, Carbon, 30, 429 (1992) https://doi.org/10.1016/0008-6223(92)90041-T