• Title/Summary/Keyword: Isotherm adsorption

Search Result 899, Processing Time 0.035 seconds

Removal of Reactive Dyes using Chitin-based Adsorbent PEI-chitin (키틴 기반 흡착제 PEI-chitin을 이용한 반응성염료의 제거)

  • Kim, Gyeong Min;Wang, Zhuo;Won, Sung Wook
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.232-238
    • /
    • 2019
  • Polyethylenimine-crosslinked chitin (PEI-chitin) was developed as a biosorbent to effectively remove dyestuffs from dye-containing wastewater. A representative reactive dye, Reactive Orange 16 (RO16) was used as a model dye. The effect of pH, isotherm, kinetic and desorption experiments were performed to evaluate the adsorption/desorption ability of PEI-chitin for RO16. As a result, the maximum adsorption capacity calculated by the Langmuir model was 266.3 mg/g at pH 2, and the time needed for adsorption equilibrium was evaluated to be about 20, 60, and 240 min for 50, 100, and 200 mg/L, respectively. The desorption experiments were carried out using various eluents such as ammonia/ethanol mixture, NaOH, $NaHCO_3$, and $Na_2CO_3$, and the highest desorption rate was 75.24% in the ammonia/ethanol mixture.

Characteristics of Micro-pore Structure of Foam Composite using Palm-based Activated Carbon (야자계 활성탄을 활용한 폼 복합체의 미세기공 구조특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.157-164
    • /
    • 2021
  • Recently, a number of studies have been conducted on photocatalysts and adsorbents that can remove harmful substances to improve environmental problems related to fine particles. In this study, a porous foam composites were fabricated using palm-based activated carbon having a large amount of micro-pores and foam concrete with a significantly larger total pore volume compared to general construction materials. To evaluate the adsorption potential of fine particles, the pore structure of the foam composites were analyzed. For the analysis of the pore structure of the foam composite, BET and Harkins-jura theory were applied from the measured nitrogen adsorption isotherm. From the results of the analysis, the specific surface area and micro-pore volume of the foam composite containing activated carbon increased significantly compared to Plain. As thereplacement of activated carbon increased, the specific surface area and micro-pore volume of the foam composite tended to increase. It seems that the foam composite has high adsorption performance for gaseous fine particle precursor such as nitrogen oxides.

A Preliminary Study on Evaluation of TimeDependent Radionuclide Removal Performance Using Artificial Intelligence for Biological Adsorbents

  • Janghee Lee;Seungsoo Jang;Min-Jae Lee;Woo-Sung Cho;Joo Yeon Kim;Sangsoo Han;Sung Gyun Shin;Sun Young Lee;Dae Hyuk Jang;Miyong Yun;Song Hyun Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.175-183
    • /
    • 2023
  • Background: Recently, biological adsorbents have been developed for removing radionuclides from radioactive liquid waste due to their high selectivity, eco-friendliness, and renewability. However, since they can be damaged by radiation in radioactive waste, a method for estimating the bio-adsorbent performance as a time should consider the radiation damages in terms of their renewability. This paper aims to develop a simulation method that applies a deep learning technique to rapidly and accurately estimate the adsorption performance of bio-adsorbents when inserted into liquid radioactive waste. Materials and Methods: A model that describes various interactions between a bio-adsorbent and liquid has been constructed using numerical methods to estimate the adsorption capacity of the bio-adsorbent. To generate datasets for machine learning, Monte Carlo N-Particle (MCNP) simulations were conducted while considering radioactive concentrations in the adsorbent column. Results and Discussion: Compared with the result of the conventional method, the proposed method indicates that the accuracy is in good agreement, within 0.99% and 0.06% for the R2 score and mean absolute percentage error, respectively. Furthermore, the estimation speed is improved by over 30 times. Conclusion: Note that an artificial neural network can rapidly and accurately estimate the survival rate of a bio-adsorbent from radiation ionization compared with the MCNP simulation and can determine if the bio-adsorbents are reusable.

Synergistic Effect of Azadirachta Indica Extract and Iodide Ions on the Corrosion Inhibition of Aluminium in Acid Media (Azadirachta Indica엑스와 요드화이온이 산성매체에서 Al 부식방지에 대한 Synergistic 효과)

  • Arab, S.T.;Al-Turkustani, A.M.;Al-Dhahiri, R.H.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • synergistic action caused by iodide ions on the corrosion inhibition of aluminium (Al) in 0.5 M HCl in the presence of Azadirachta Indica (AZI) plant extract has been investigated using potintiodynamic polarization and impedance techniques. It is found that AZI extract inhibits the corrosion of aluminium in 0.5 M HCl. The inhibition efficiency increases with the increase in AZI extract concentration, until 24% v/v of AZI extract, then Inh.% is decreased with father increase in AZI extract concentration. The adsorption of this extract in the studied concentration is found to obey Frewendlish adsorption isotherm. The addition of iodide ions enhances the inhibition efficiency to a considerable extent. The increase in Inh.% values in presence of fixed concentration of iodide ions indicates that AZI extract forms an insoluble complex at lower AZI extract concentrations by undergoing a joint adsorption. But at higher concentrations of AZI extract, competitive adsorption is found between iodide ions and the formed complex leading to less Inh.%.The Inh.% decreased in presence of iodide ions with AZI extract than in presence of AZI extract alone at all studied iodide concentrations. The synergism parameter Sq is defined and calculated from surface coverage values. This parameter in the case of AZI extract is found to be more than unity, indicating that the enhanced inhibition efficiency caused by the addition of iodide ions.

Estimation of Nonlinear Adsorption Isotherms and Advection-Dispersion Model Parameters Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 흡착 식 및 이류-확산 모델 파라미터 추정)

  • Do, Nam-Young;Lee, Seung-Rae;Park, Hyun-Il
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.41-53
    • /
    • 2006
  • In this study, estimation of nonlinear adsorption isotherms(Langmuir & Freundlich adsorption isotherm) and advection-dispersion model parameters was conducted using genetic algorithm(GA) for Zn and Cd adsorption. Estimated parameters of nonlinear adsorption isotherms, which were obtained from the optimization process using genetic algorithm(GA), are nearly same with the parameters obtained from a linearization process of the nonlinear isotherms. Estimated effective diffusion coefficients, which were obtained from a finite element analysis of the advection-dispersion model and an optimization procedure using the genetic algorithm, for the metals were approximately in the order of $10^{-7}cm^2/s$ which could be obtained based on the linear distribution coefficient. The effective diffusion coefficients based on the nonlinear retardation factors were in the range of $10^{-6}{\sim}10^{-5}cm^2/s$. As a result, the correlation coefficient obtained between the measured and calculated concentration was over 0.9 which means that the genetic algorithm should be successfully applied to estimate the unknown parameters of the nonlinear adsorption isotherms and advection-dispersion model.

  • PDF

Leaching and Adsorption of Flupyrazofos(KH-502) in the Soil (Flupyrazofos(KH-502)의 토양 중 용탈 및 흡착)

  • Yang, Jae-E;Cho, Boo-Yeon;You, Kyoung-Youl
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.72-79
    • /
    • 1997
  • Adsorption, leaching, and retention of the Flupyrazofos(KH-502), a new active ingredient for insecticide, in the soils under laborarory and field conditions were investigated to provide the basic data for the safety use and to assess a secondary impact of this insecticide on soil and water environments. A significant power function relation was found between the adsorbed KH-502 and time, representing that 45% of the added KH-502 was adsorbed within 30 min. but a quasiequilibrium was reached after 6 to 12 hr with a slower adsorption. Adsorption phenomena followed th first-order kinetics and time required for 50% adsorption was 5.8 hr. The equilibrium adsorption isotherm was explained by the Freundlich equation and was classified as S-type. The amounts of KH-502 leached through the soil column (C) as compared to initial conc. ($C_0$) were very low and these relative concentrations ($C/C_0$) were 0.073 and 0.017 in SL and CL soils, respectively. The residual conc. of KH-502 in the surface soil was comparatively low and decreased with time. Half-lives of KH-502 in the surface soil was comparatively low and decreased with time. Half-lives of KH-502 under the field conditions were estimated to be 20 and 18 days in the SL and CL soils, respectively. The KH-502 cone, transported to the subsurface soils was extremely low. These results demonstrate that KH-502 has a low pollution risk potential to the surrounding environment as far as it is used following the recommended guideline.

  • PDF

The Removal and Adsorption Characteristics of 2-MIB & Geosmin using PAC (PAC를 이용한 2-MIB와 Geosmin의 흡착특성과 제거에 관한 연구)

  • Jun, Dae-Young;Lee, Hyeon-Ju;Hong, Seongho;Yoon, Jeyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2097-2104
    • /
    • 2000
  • Naturally occurring taste and odor problems include those produced by microorganism. notably algae and bacteria. The major compounds causing taste and odor are MIB and Geosmin which can cause earthy-musty at very low concentration 9ng/L and 4ng/L, respectively. Especially, the problem is very serious from summer to fall in source and finished water. It is well known that using PAC is one of the best technology to control these compounds in drinking water treatment. In this study, optimum dosage and dosing time of PAC were observed with the adsorption isotherm experiments in single and binary compounds. Also, the effect of natural organic matter(NOM) was investigated by using a natural water with JSW. The adsorption capacity of Geosmin was higher than MIB in both with NOM and without NOM. The adsorption capacity of Geosmin and MIB was 4 times lower with NOM than that of without NOM. which was caused by competition adsorption. When the initial concentration of Geosmin and MIB were 100ng/L in JSW, at least 4 hours of reaction time was needed to achieve 99% removal with 20mg/L of the PAC.

  • PDF

Phosphate Adsorption Characteristics of Zirconium Mesostructure Synthesized under Different Conditions (지르코늄 메조구조체의 합성조건 변화에 따른 인 흡착 특성)

  • Lee, Seung-Hak;Lee, Kwan-Yong;Lee, Sang-Hyup;Choi, Yong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.583-587
    • /
    • 2006
  • In this study, the phosphate adsorption characteristics of zirconium mesostructures synthesized under different conditions were estimated. X-ray diffraction analysis, phosphate adsorption isotherm test and kinetic test was performed for the zirconium mesostructures synthesized at different inorganic/surfactant molar ratio and with different surfactant templates. The test results were analyzed with adsorption models. From this work, it was found that at the inorganic/surfactant molar ratio of 1/0.50($0.013{\cdot}Zr(SO_4){_2}:0.068{\cdot}surfactant:5.55{\cdot}H_2O$), the meso-pores in the material could be most uniformly and clearly formed and thus the adsorption capacity and reaction rate of material could be maximized. And the pore size in the mesostructure increased with the chain length of surfactant template used, and maximum phosphate adsorption amount and reaction rate could be achieved with the zirconium mesostructure synthesized with the surfactant template of dodecyltrimethylammonium bromide.

Adsorption of nitrate from contaminated sea water with activated dredged sediment (오염해수로부터 질산염의 제거를 위한 전처리 퇴적물의 흡착특성)

  • Song Young-Chae;Woo Jung-Hui;Jung Eun-Hye;Go Sung-Jung;Kim Dong-Geun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.589-593
    • /
    • 2005
  • A laboratory study on the adsorption of nitrate in polluted coastal water using various materials including several types of dredged sediments(ST) and yellow c1ays(YC), which are activated by heat(HT), bioleaching for heavy metal removal(BL) and neutralization(NR) was performed. The equilibrium time of the adsorption for the sediment bioleached and treated by heat(BL-HT-ST) was only 17min which was faster than the sediment bioleached, neutralized and treated by heat(BL-NR-HT-S) (25min) or the sediment treated by the bioleaching process(BL -ST)(27min), but longer equilibrium times for yellow c1ay(YC) or heat treated yellow day(HT- YC) were required. The adsorption processes of nitrate in sea water for tested material could be described by Freundlich isotherm, but were significantly affected by surface characteristics of the materials. The adsorption capacities for raw sediment and heat treated sediment were 2.12 and 2.19mg NO3-N/g, respectively, which were higher than others, indicating that the sediment activated by heat could be used as a material for the improvement of nearshore water quality.

Characteristics of Silver Ion-Exchange and Methyl Iodide Adsorption at High Temperature Condition by Surface-Modified Natural Zeolite (표면개질 천연제올라이트를 이용한 은이온 교환 및 고온공정에서 메틸요오드 흡착특성)

  • Park, Geun Il;Cho, Il-Hoon;Kim, Kae-Nam;Lee, Min Ok;Yu, Jae-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1765-1775
    • /
    • 2000
  • The removal of radioactive organic iodide generated from high temperature process in nuclear facility was generally performed by silver ion-exchanged synthetic zeolite (AgX). The purpose of this study is to obtain fundamental data for the substitution of natural zeolite(NZ) in stead of synthetic zeolite as supporter for the removal of methyl iodide in high temperature conditions. Therefore, NZ was modified with NaCl, $NaNO_3$ solution, and the analysis of the physical or surface characteristics through XRD, SEM-EDAX, and BET analysis was performed. In order to obtain the optimal surface-modification condition of NZ, adsorption capacities at $150^{\circ}C$ on surface-modified silver ion-exchanged NZ prepared with the variation of solution concentration were evaluated. The optimal condition of surface modification is that concentration of $NaNO_3$ and $AgNO_3$ are 1N and 1.2N, respectively(namely Ag-SMNZ). The adsorption isotherm of methyl iodide on Ag-SMNZ in a range of $100^{\circ}C$ to $300^{\circ}C$ was obtained, which is similar to that of 13X, and the maximum adsorption amount of Ag-SMNZ reached approximately 50% that of AgX. It would be evaluated that the adsorption capacity at $150{\sim}200^{\circ}C$ is relatively higher than other temperature, and the chemisorption between silver and iodide is attributed to a strong binding even after desorption test.

  • PDF