• Title/Summary/Keyword: Isotherm adsorption

Search Result 899, Processing Time 0.026 seconds

Application of Reused Powdered Waste Containing Aluminum Oxide on the Treatment of Cr(VI) (6가 크롬 처리를 위한 알루미늄 산화물을 함유한 재생 분말 폐기물의 적용)

  • Lim, Jae-Woo;Kim, Tae-Hwan;Kang, Hyung-Sik;Kim, Do-Son;Kim, Han-Seon;Cho, Seok-Hee;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.179-185
    • /
    • 2009
  • In this research, the removal capacity of Cr(VI) by the reused powdered wastes (RPW) containing aluminium oxides was studied. As a pre-treatment process for the preparation of calcined wastes, calcination was conducted at $550^{\circ}C$ to remove organic fraction in the raw wastes. In order to study the adsorption trend of Cr(VI) ions from aqueous solutions, the pH-edge adsorption, adsorption kinetic and adsorption isotherm were investigated using a batch reactor in the presence of four different background electrolytes($NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-},\;PO_4\;^{3-}$). Cr(VI) adsorption was greatly reduced in the presence of $SO_4\;^{2-}$ and $PO_4\;^{3-}$ over the entire pH range. Meanwhile the inhibition effect by $NO_3\;^-$ and $CO_3\;^{2-}$ was relatively lower than that by $SO_4\;^{2-}$ and $PO_4\;^{3-}$. Cr(VI) adsorption was maximum around pH 4.5 in the presence of $NO_3\;^-$ and $CO_3\;^{2-}$. As the concentration of background electrolytes increased, Cr(VI) adsorption decreased. This result mightly suggests that adsorption between the surface of RPW and Cr(VI) occurs through outer-sphere complex. Cr(VI) adsorption onto the RPW was well described by second-order kinetics. From the Langmuir isotherm at initial pH 3, the maximum adsorbed amount of Cr(VI) onto the RPW was 11.1, 10, 3.3, 5 mg/g in the presence of $NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-}$, and $PO_4\;^{3-}$, respectively.

Adsorption Removal of Eosin Y by Granular Activated Carbon (입자상 활성탄에 의한 Eosin Y의 홉착제거)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.277-283
    • /
    • 2010
  • Eosin Y is used a colorant and dye but eosin Y is harmful toxic substance. In this study, the adsorption characteristics of granular activated carbon have been investigated for the adsorption of eosin dye dissolved in water. The effects of initial dye concentration, contact time, pH and temperature on adsorption of eosin by a fixed amount of activated carbon have been studied in batch adsorber and fixed bed. The adsorptivity of activated carbon for eosin Y were largely improved by pH control. When the pH was 3 in the sample, the eosin Y could be removed 99% of initial concentration (10 mg/L). The adsorption equilibrium data are successfully fitted to the Freundlich isotherm equation in the temperature range from 293 to 333 K. The estimated values of k and ${\beta}$ are 19.56-134.62, 0.442-0.678, respectively. The effects of the operation conditions of the fixed bed on the breakthrough curve were investigated. When the inlet eosin Y concentration is increased from 10 to 30 mg/L, the corresponding adsorption breaktime appears to decrease from 470 to 268 min at bed height of 3 cm and a constant flow rate of 2 g/min. When the initial eosin Y flow rate is increased from 1 to 3 g/min, the corresponding adsorption breaktime appears to decrease from 272 to 140 min at bed height of 3 cm and inlet concentration of 10 mg/L. Also, breaktime increased with increasing bed height at flow rate of 2 g/min and inlet concentration of 10 mg/L. And length of adsorption zone showed similar patterns.

Physical and Chemical Adsorption Properties for Tetracycline Using Activated Carbon with Nitrogen Plasma Treatment (질소 플라즈마 처리된 활성탄소를 이용한 테트라사이클린의 물리 및 화학 흡착 특성)

  • In Woo Lee;Seongjae Myeong;Chung Gi Min;Seongmin Ha;Seoyeong Cheon;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • In this study, nitrogen plasma treatment was performed in 5, 10, and 15 minutes to improve the tetracycline adsorption performance of activated carbon. All nitrogen plasma-treated activated carbons showed improved tetracycline adsorption compared to untreated activated carbons. The nitrogen functional groups in activated carbon lead to chemisorption with tetracycline via π-π interactions and hydrogen bonding. In particular, in the nitrogen plasma treatment at 80 W and 50 kHz, the activated carbon treated for 10 minutes had the best adsorption performance. At this time, the nitrogen content on the surface of the activated carbon was 2.03% and the specific surface area increased to 1,483 m2/g. As a result, nitrogen plasma treatment of activated carbon improved its physical and chemical adsorption capabilities. In addition, since the adsorption experimental results were in good agreement with the Langmuir isotherm and pseudo-second order model, it was determined that the adsorption of tetracycline on the nitrogen plasma-treated activated carbon was dominated by chemical adsorption through a monolayer. As a result, nitrogen plasma-treated activated carbon can be used as an adsorbent to efficiently remove tetracycline from water due to the synergistic effect of physical adsorption and proactive chemical adsorption.

Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies

  • Reddy, Desireddy Harikishore Kumar;Lee, Seung-Mok;Seshaiah, Kalluru
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • The removal of Cd(II) and Cu(II) from aqueous solution by an agricultural solid waste biomass prepared from Moringa oleifera bark (MOB) was investigated. The biosorbent was characterized by Fourier transform infrared spectroscopy and elemental analysis. Furthermore, the effect of initial pH, contact time, biosorbent dosage, initial metal ion concentration and temperature on the biosorption of Cd(II) and Cu(II) were studied using the batch sorption technique. Kinetic studies indicated that the biosorption process of the metal ions followed the pseudo-second order model. The biosorption data was analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Based on the Langmuir isotherm, the maximum biosorption capacities for Cd(II) and Cu(II) onto MOB were 39.41 and 36.59 mg/g at 323 K, respectively. The thermodynamic parameters, Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) changes, were also calculated, and the values indicated that the biosorption process was endothermic, spontaneous and feasible in the temperature range of 303-323 K. It was concluded that MOB powder can be used as an effective, low cost, and environmentally friendly biosorbent for the removal of Cd(II) and Cu(II) ions from aqueous solution.

Removal Characteristics of Cu(II) by PSf/D2EHPA/CNT Beads Prepared by Immobilization of Carbon Nanotubes (CNT) and Di-(2-ethylhexyl)-phosphoric acid (D2EHPA) on Polysulfone (PSf) (Polysulfone으로 carbon nanotubes (CNT)와 di-(2-ethylhexyl)-phosphoric acid (D2EHPA)를 고정화한 PSf/D2EHPA/CNT 비드에 의한 Cu(II)의 제거특성)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1485-1491
    • /
    • 2016
  • PSf/D2EHPA/CNT beads were prepared by immobilizing di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and carbon nanotubes (CNT) on polysulfone (PSf) and used to remove Cu(II) from aqueous solutions. Optimum pH was in the range of 4 to 6. The removal kinetic of Cu(II) by the prepared PSf/D2EHPA/CNT beads was mainly governed by internal diffusion, and the diffusion coefficient of Cu(II) by PSf/D2EHPA/CNT beads was found to be $2.19{\times}10^{-4}{\sim}2.64{\times}10^{-4}cm^2/s$. The Langmuir isotherm model predicted the experimented data well. The maximum removal capacity of Cu(II) obtained from this isotherm was 7.32 mg/g. Calculated thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ showed that the adsorption of Cu(II) ions onto PSf/D2EHPA/CNT beads was feasible, spontaneous and endothermic at 293-323 K.

Chracteristics and Dyieing Properties of Green Tea Colorants(Part II) -Dyeing Properties of Silk with Green Tea Colorants- (녹차색소의 특성과 염색성(제2보) -견섬유에 대한 녹차색소의 염색성-)

  • Shin, Youn-sook;Choi, Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.3
    • /
    • pp.385-390
    • /
    • 1999
  • Dyeing properties of silk fabric with green tea colorants were studied by investigating the effect of dyeing conditions such as concentration pH dyeing temperature and time on dye uptakes and effect of mordants on color change and dye uptakes, And various colorfastnesses of dyed fabrics were evaluated for practical use. Green tea colorants showed relatively good affinity to silk fabric and produced yellowish red color. Langmuir adsoption isotherm was obtained. Therefore it is considered that ionic bondings between colorants and silk fibers are formed. Mordants did not improve dye uptakes and affect color of dyed fabrics significantly. But mordanting adversely affected lightfastness of dyed fabrics. Regardless of mordanting colorfastness to perspiration especially in alkaline condition of dyed fabrics showed low rating compared with other colorfastness. It is concluded that mordanting is not necessary for silk dyeing with green tea colorants.

  • PDF

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S.;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.495-501
    • /
    • 2020
  • In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

Fabrication of High Permeable Nanoporous Carbon-SiO$_2$ Membranes Derived from Siloxane-containing Polyimides

  • Kim, Youn Kook;Han, Sang Hoon;Park, Ho Bum;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • The silica containing carbon (C-SiO$_2$) membranes were fabricated using poly(imide siloxane) (PIS) having -CO- swivel group. The characteristics of porous C-SiO$_2$ structures prepared by the pyrolysis of poly(imide siloxane) were related with the micro-phase separation between the imide block and the siloxane block. Furthermore, the nitrogen adsorption isotherms of the CMS and the C-SiO$_2$ membranes were investigated to define the characteristics of porous structures. The C-SiO$_2$ membranes derived from PIS showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures, while the CMS membranes derived from PI showed the type I isotherm. For the molecular sieving probe, the C-SiO$_2$ membranes pyrolyzed at 550, 600, and 700$^{\circ}C$ showed the O$_2$ permeability of 924, 1076, and 367 Barrer (1 ${\times}$ 10$\^$-10/㎤(STP)cm/$\textrm{cm}^2$$.$s$.$cmHg) and O$_2$/N$_2$ selectivity of 9, 8, and 12.

Competitive Adsorption of Two Basic Dyes RB5 and GB4 on a Local Clay (점토에 대한 2개 염기성 염료 RB5와 GB4의 경쟁 흡착)

  • Elaziouti, A.;Derriche, Z.;Bouberka, Z.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.110-114
    • /
    • 2010
  • The equilibrium of adsorption of basics dyes RB 5 and BG 4 from a single dyes in the mixtures on the sodium-exchanged clay of the Maghnia (Algeria) was studied. The maximum adsorption capacities of BR5 and BG4 in single dyes were 465.13 and 469.90 mg/g respectively. In the simultaneous adsorption of BR5 and BG4 from mixture solutions, three different initials concentrations ratios R (R=$C_{(BR5)}/C_{(BG4)}$) were tested: 2.5/1, 1/1 and 1/2.5 using ADMI method. The isotherms adsorptions of dyes from the mixtures are characteristics of competition phenomenon. A very strong interaction between BR5 and BG4 for the active sites of adsorption of surface of clay is obtained for R = 1/1. The ratio R' (R'=$Qe_{(mixture)}/Qe_{(single)}$) of the adsorption capacity of BR5 and BG4 in the mixture were reduced by factor of 0.86, 0.74 and 0.84 for the initials concentrations ratios R (R=$C_{(BR5)}/C_{(BG4)}$) of 2.5/1, 1/1 and 1/2.5 respectively. The variation of the ratio of the adsorption capacity R‘ of BR5 and BG4 in the mixture solutions with initial concentration ratios R indicates that BR5 dye is slightly favourable in the competition adsorption than BG4. Langmuir and Freundlich models fit very well with adsorption behaviour of single dyes as well as the dyes in mixture solutions.

Removal of Cd(II) by Cation Exchange Resin in Differential Bed Reactor (미분층반응기에서 양이온 교환수지에 의한 카드뮴(II)의 제거)

  • Kim, Jong-Tae;Chung, Jaygwan G.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1193-1203
    • /
    • 2000
  • In this study, in order to remove Cd(II) from aqueous solutions, strongly acidic cation exchange resin(SK1B) by Diaion Co. was employed as an adsorbent. Experiments were mainly performed in two parts at room temperature($25{\pm}5^{\circ}C$) : batch tests and adsorption kinetics tests. In batch tests adsorption equilibrium time, pH effects, temperature effects, several adsorption isotherms, and finally desorption tests were examined. In differential bed tests, an optimum flow rate and an overall adsorption rate were obtained. In the batch experiment, adsorption capability increased with pH and became constant above pH 6 and adsorption quantity increased with temperature. Batch experimental data found that Freundlich and Sips adsorption isotherms were more favorable than Langmuir adsorption isotherm over the range of concentration (5~15ppm). The desorbent used in the desorption test was hydrochloric acid solution with different concentrations(0.01~2N). The degree of regeneration increased with concentration of desorbent and decreased slightly with the number of regeneration. In the continuous flow process using a differential bed reactor, the optimum flow rate was $564m{\ell}/min$ above which the film diffusion resistance was minimized. The overall adsorption rate for the removal of Cd(II) by cation exchange resin was found as follows ; $r=1.3785C_{fc}^{1.2421}-2.0907{\times}10^{0.0746C_i}\;q_e^{0.0121C_i-0.0301}$

  • PDF