• 제목/요약/키워드: Isolectin-B4

검색결과 6건 처리시간 0.023초

돼지의 대동맥 판막 및 심낭에서 녹색콩 알파-갈락토시다아제를 이용한 알파-갈 항원결정인자 제거 (Removal of ${\alpha}$-Gal Epitopes in Aortic Valve and Pericardium of Pig Using Green Coffee Bean ${\alpha}$-Galactosidase)

  • 박성식;김웅한;김경환;이창하;최선영;이철;오삼세;김관창;김용진
    • Journal of Chest Surgery
    • /
    • 제41권1호
    • /
    • pp.12-24
    • /
    • 2008
  • 배경: 최근 조직판막의 구조적 손상에 있어서 동물면역 반응이 중요한 역할을 할 가능성이 제기되면서 동물의 대표적 이종항원 물질인 알파-갈 항원결정인자에 대한 환자의 면역반응에 관한 관심이 높아지고 있다. 또한 알파-갈은 세포 표면에 존재하며 이는 녹색콩 알파-갈락토시다아제 라는 효소를 이용하여 제거할 수 있다고 알려져 있고 조직 표면의 알파-갈 항원결정인자는 Griffonia Simplicifolia의 동종렉틴 중 B4타입에 선택적으로 결합하여 이를 이용해서 염색할 수 있다고 알려져 있다. 이에 본 연구팀은 조직판막을 만드는데 많이 사용되는 돼지의 대동맥 판막 및 심낭 조직을 가지고 녹색콩알파-갈락토시다아제를 이용하여 이들 조직의 알파-갈 항원결정인자를 제거할 수 있는지 알아 보고자하였다. 대상 및 방법: 신선한 돼지의 대동맥 판막 및 심낭 조직을 0.5 unit/mL, 1.0 unit/mL, 2.0 unit/mL 농도의 녹색콩 알파-갈락토시다아제로 pH 6.5, $4^{\circ}C$에서 24시간 처리한 뒤 이를 Griffonia Simplicifolia 동종렉틴 B4 타입을 이용한 면역조직형광염색으로 염색하여, 각각의 농도에서 효소 반응 후 해당 조직의 알파-갈 항원결정인자가 얼마나 제거되는지를 형광염색의 정도로 판단하였다. 결과: 돼지의 대동맥 판막 조직의 경우 1.0 unit/mL농도의 녹색콩 알파-갈락토시다아제를 pH 6.5, $4^{\circ}C$ 에서 24시간 처리하였을 때 형광염색이 거의 되지 않을 정도로 알파-갈 항원결정인자가 제거되었고 이는 효소의 농도를 2.0 unit/mL로 증가시켰을 때에도 비슷한 양상을 보였다. 돼지의 심낭 조직의 경우 효소 처리 전의 알파-갈 염색에서도 대동맥 판막조직에 비하여 많은 양의 형광염색을 보였으며 효소 처리의 농도도 대동맥 판막의 경우보다 높은 2.0 unit/mL의 농도에서 알파-갈 항원결정인자가 제거되는 양상을 보였다. 걸론: 돼지의 대동맥 판막 조직과 심낭 조직의 알파-갈 항원결정인자는 eriffonia simplicifolia의 동종렉틴 B4를 사용한 면역조직형광염색에서 잘 염색되었으며 이를 알파-갈락토시다아제를 사용하여 제거하였을 때 각각 1.0 unit/mL, 2.0 unit/mL 농도의 녹색콩 알파-갈락토시다아제를 $4^{\circ}C$, pH 6.5의 조건에서 24시간 반응시켰을 때 효과적으로 상당량 제거할 수 있었다. 향후 돼지의 판막조직 및 심낭조직으로 만드는 조직판막의 내구성 증대에 대표적인 동물 면역항원인 알파-갈 항원결정인자의 제거가 유용한 도구가 될 수 있을 것이며 앞으로 알파-갈락토시다아제로 처리한 돼지의 조직판막에 대한 인간혈장의 항-갈 항체 및 항-갈 단클론항체를 이용한 직접적인 면역학적 연구가 필요하다.

Enhanced Expression of TREK-1 Is Related with Chronic Constriction Injury of Neuropathic Pain Mouse Model in Dorsal Root Ganglion

  • Han, Hyo Jo;Lee, Seung Wook;Kim, Gyu-Tae;Kim, Eun-Jin;Kwon, Byeonghun;Kang, Dawon;Kim, Hyun Jeong;Seo, Kwang-Suk
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.252-259
    • /
    • 2016
  • Neuropathic pain is a complex state showing increased pain response with dysfunctional inhibitory neurotransmission. The TREK family, one of the two pore domain $K^+$ (K2P) channel subgroups were focused among various mechanisms of neuropathic pain. These channels influence neuronal excitability and are thought to be related in mechano/thermosensation. However, only a little is known about the expression and role of TREK-1 and TREK-2, in neuropathic pain. It is performed to know whether TREK-1 and/or 2 are positively related in dorsal root ganglion (DRG) of a mouse neuropathic pain model, the chronic constriction injury (CCI) model. Following this purpose, Reverse Transcription Polymerase Chain Reaction (RT-PCR) and western blot analyses were performed using mouse DRG of CCI model and compared to the sham surgery group. Immunofluorescence staining of isolectin-B4 (IB4) and TREK were performed. Electrophysiological recordings of single channel currents were analyzed to obtain the information about the channel. Interactions with known TREK activators were tested to confirm the expression. While both TREK-1 and TREK-2 mRNA were significantly overexpressed in DRG of CCI mice, only TREK-1 showed significant increase (~9 fold) in western blot analysis. The TREK-1-like channel recorded in DRG neurons of the CCI mouse showed similar current-voltage relationship and conductance to TREK-1. It was easily activated by low pH solution (pH 6.3), negative pressure, and riluzole. Immunofluorescence images showed the expression of TREK-1 was stronger compared to TREK-2 on IB4 positive neurons. These results suggest that modulation of the TREK-1 channel may have beneficial analgesic effects in neuropathic pain patients.

Isolation and Characterization of Two Korean Mistletoe Lectins

  • Kang, Tae-Bong;Song, Seong-Kyu;Yoon, Taek-Joon;Yoo, Yung-Choon;Lee, Kwan-Hee;Her, Erk;Kim, Jong-Bae
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.959-965
    • /
    • 2007
  • Two isolectins (KML-IIU and the KML-IIL) were individually isolated from the previously reported Korean mistletoe lectin, KML-C, by using an immunoaffinity column. Molecular weights of the KML-IIU and the KML-IIL were 64 kDa and 60 kDa respectively. Both of the lectins were composed of heterogeneous A and B subunits linked with a disulfide bond, and showed the same carbohydrate-binding specificities for Gal and GalNAc. However, they are different not only in biophysical properties (glycosylation and amino acid compositions) but also bioactivities (cell killing and cytokine induction). The KML-IIL showed 17-145 times stronger in cytotoxicities to various human and mouse cancer cell lines than the KML-IIU. The KML-IIL also induced TNF-$\alpha$ secretion from mouse peritoneal macrophages 4.5 times better than the KML-IIU. The results demonstrated isolectins in Korean mistletoe were varied in bioactivities and the KML-IIL may be developed as an anti-cancer agent.

The neuroprotective mechanism of ampicillin in a mouse model of transient forebrain ischemia

  • Lee, Kyung-Eon;Cho, Kyung-Ok;Choi, Yun-Sik;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.185-192
    • /
    • 2016
  • Ampicillin, a ${\beta}$-lactam antibiotic, dose-dependently protects neurons against ischemic brain injury. The present study was performed to investigate the neuroprotective mechanism of ampicillin in a mouse model of transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral common carotid artery occlusion for 40 min. Before transient forebrain ischemia, ampicillin (200 mg/kg, intraperitoneally [i.p.]) or penicillin G (6,000 U/kg or 20,000 U/kg, i.p.) was administered daily for 5 days. The pretreatment with ampicillin but not with penicillin G significantly attenuated neuronal damage in the hippocampal CA1 subfield. Mechanistically, the increased activity of matrix metalloproteinases (MMPs) following forebrain ischemia was also attenuated by ampicillin treatment. In addition, the ampicillin treatment reversed increased immunoreactivities to glial fibrillary acidic protein and isolectin B4, markers of astrocytes and microglia, respectively. Furthermore, the ampicillin treatment significantly increased the level of glutamate transporter-1, and dihydrokainic acid (DHK, 10 mg/kg, i.p.), an inhibitor of glutamate transporter-1 (GLT-1), reversed the neuroprotective effect of ampicillin. Taken together, these data indicate that ampicillin provides neuroprotection against ischemia-reperfusion brain injury, possibly through inducing the GLT-1 protein and inhibiting the activity of MMP in the mouse hippocampus.

한국흑염소 보습코기관의 형태학적 관찰 (A morphological study of vomeronasal organ of Korean black goat (Capra aegagrus hircus))

  • 박창남;양원준;배연지;이용덕;강완철;안미정;신태균
    • 대한수의학회지
    • /
    • 제53권1호
    • /
    • pp.55-60
    • /
    • 2013
  • The vomeronasal organ (VNO) plays an important role in reproduction and social activities in ruminants including goats. A morphological study on the structure of VNO and its epithelial cells was carried out in Korean black goats. Grossly, the VNO of Korean goats opens into mouth through incisive ducts. Microscopically, the epithelium of VNO consisted of medial sensory epithelium and lateral non-sensory epithelium. Several blood vessels and nerve bundles were observed in the lamina propria encased by vomeronasal cartilage. Immunohistochemical staining showed that protein gene product (PGP) 9.5 was immunostained in the receptor cells of the sensory epithelium and in some cells of the non-sensory epithelium. Galectin-3 was mainly observed in the supporting cells of sensory and non-sensory epithelium. Lectins including wheat germ agglutinin, Ulex europaeus agglutinin, Bandeiraea simplicifolia lectin Isolectin B4, Dolichos biflorus agglutinin and soybean agglutinin used in this study were bound in VNO sensory, non-sensory epithelia as well as in the lamina propria with varying intensity. Collectively, this is a first descriptive morphological study of VNO of Korean black goat with special reference to lectin histochemistry.

R-type Calcium Channel Isoform in Rat Dorsal Root Ganglion Neurons

  • Fang, Zhi;Hwang, Jae-Hong;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.45-49
    • /
    • 2010
  • R-type $Ca_v2.3$ high voltage-activated $Ca^{2+}$ channels in peripheral sensory neurons contribute to pain transmission. Recently we have demonstrated that, among the six $Ca_v2.3$ isoforms ($Ca_v2.3a{\sim}Ca_v2.3e$), the $Ca_v2.3e$ isoform is primarily expressed in trigeminal ganglion (TG) nociceptive neurons. In the present study, we further investigated expression patterns of $Ca_v2.3$ isoforms in the dorsal root ganglion (DRG) neurons. As in TG neurons, whole tissue RT-PCR analyses revealed the presence of two isoforms, $Ca_v2.3a$ and $Ca_v2.3e$, in DRG neurons. Single-cell RT-PCR detected the expression of $Ca_v2.3e$ mRNA in 20% (n=14/70) of DRG neurons, relative to $Ca_v2.3a$ expression in 2.8% (n=2/70) of DRG neurons. $Ca_v2.3e$ mRNA was mainly detected in small-sized neurons (n=12/14), but in only a few medium-sized neurons (n=2/14) and not in large-sized neurons, indicating the prominence of $Ca_v2.3e$ in nociceptive DRG neurons. Moreover, $Ca_v2.3e$ was preferentially expressed in tyrosine-kinase A (trkA)-positive, isolectin B4 (IB4)-negative and transient receptor potential vanilloid 1 (TRPV1)-positive neurons. These results suggest that $Ca_v2.3e$ may be the main R-type $Ca^{2+}$ channel isoform in nociceptive DRG neurons and thereby a potential target for pain treatment, not only in the trigeminal system but also in the spinal system.