References
- Acosta, C., Djouhri, L., Watkins, R., Berry, C., Bromage, K. and Lawson, S. N. (2014) TREK2 expressed selectively in IB4-binding Cfiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J. Neurosci. 34, 1494-1509. https://doi.org/10.1523/JNEUROSCI.4528-13.2014
- Alloui, A., Zimmermann, K., Mamet, J., Duprat, F., Noel, J., Chemin, J., Guy, N., Blondeau, N., Volley, N., Rubat-Coudert, C., Borsotto, M., Romey, G., Heurteaux, C., Reeh, P., Eschalier, A. and Lazdunski, M. (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 25, 2368-2376. https://doi.org/10.1038/sj.emboj.7601116
- Bennett, G. J. and Xie, Y. K. (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87-107. https://doi.org/10.1016/0304-3959(88)90209-6
- Campbell, J. N. and Meyer, R. A. (2006) Mechanisms of neuropathic pain. Neuron 52, 77-92. https://doi.org/10.1016/j.neuron.2006.09.021
- Decosterd, I. and Woolf, C. J. (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149-158. https://doi.org/10.1016/S0304-3959(00)00276-1
- Devilliers, M., Busserolles, J., Lolignier, S., Deval, E., Pereira, V., Alloui, A., Christin, M., Mazet, B., Delmas, P., Noel, J., Lazdunski, M. and Eschalier, A. (2013) Activation of TREK-1 by morphine results in analgesia without adverse side effects. Nat. Commun. 4, 2941. https://doi.org/10.1038/ncomms3941
- Duprat, F., Lesage, F., Patel. A. J., Fink, M., Romey, G. and Lazdunski, M. (2000) The neuroprotective agent riluzole activates the two P domain K+ channels TREK-1 and TRAAK. Mol. Pharmacol. 57, 906-912.
- Fang, X., Djouhri, L., McMullan, S., Berry, C., Waxman, S. G., Okuse, K. and Lawson, S. N. (2006) Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. J. Neurosci. 26, 7281-7292. https://doi.org/10.1523/JNEUROSCI.1072-06.2006
- Franks, N. P. and Honore, E. (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol. Sci. 25, 601-608. https://doi.org/10.1016/j.tips.2004.09.003
- Gardener, M. J., Johnson, I. T., Burnham, M. P., Edwards, G., Heagerty, A. M. and Weston, A. H. (2004) Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries. Br. J. Pharmacol. 142, 192-202. https://doi.org/10.1038/sj.bjp.0705691
- Gold, M. S., Weinreich, D., Kim, C. S., Wang, R., Treanor, J., Porreca, F. and Lai, J. (2003) Redistribution of Nav1.8 in uninjured axons enables neuropathic pain. J. Neurosci. 23, 158-166. https://doi.org/10.1523/JNEUROSCI.23-01-00158.2003
- Haiyan, W., Yuxiang, L., Linglu, D., Yaqiong, X., Shaojv, J., Juan, D., Lin, M., Juan, L., Ru, Z., Xiaoliang, H., Tao, S. and Jianqiang, Y. (2013) Antinociceptive effects of oxymatrine from Sophora flavescens, through regulation of NR2B-containing NMDA receptor-ERK/ CREB signaling in a mice model of neuropathic pain. Phytomedicine 20, 1039-1045. https://doi.org/10.1016/j.phymed.2013.04.012
-
Heurteaux, C., Guy, N., Laigle, C., Blondeau, N., Duprat, F., Mazzuca, M., Lang-Lazdunski, L., Widmann, C., Zanzouri, M., Romey, G. and Lanzdunski, M. (2004) TREK-1, a
$K^+$ channel involved in neuroprotection and general anesthesia. EMBO J. 23, 2684-2695. https://doi.org/10.1038/sj.emboj.7600234 -
Honore, E. (2007) The neuronal background
$K_{2p}$ channels: focus on TREK1. Nat. Rev. Neurosci. 8, 251-261 - Huang, D. and Yu, B. (2008) Recent advance and possible future in TREK-2: a two-pore potassium channel may involved in the process of NPP, brain ischemia and memory impairment. Med. Hypotheses 70, 618-624. https://doi.org/10.1016/j.mehy.2007.06.016
- Kang, D., Choe, C. and Kim, D. (2005) Thermosensitivity of the twopore domain K+ channels TREK-2 and TRAAK. J. Physiol. 564, 103-116. https://doi.org/10.1113/jphysiol.2004.081059
- Kim, E. J., Kang, D. and Han, J. (2011) Baicalein and wogonin are activators of rat TREK-2 two-pore domain K+ channel. Acta Physiol. (Oxf) 202, 185-192. https://doi.org/10.1111/j.1748-1716.2011.02263.x
- Kim, S. H. and Chung, J. M. (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355-363. https://doi.org/10.1016/0304-3959(92)90041-9
- La, J. H. and Gebhart, G. F. (2011) Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G165-G174. https://doi.org/10.1152/ajpgi.00417.2010
- Lee, J. Y., Shin, T. J., Choi, J. M., Seo. K. S., Kim, H. J., Yoon, T. G., Lee, Y. S., Han, H., Chung, H. J., Oh, Y., Jung, S. J. and Shin, K. J. (2013) Antinociceptive curcuminoid, KMS4034, effects on inflammatory and neuropathic pain likely via modulating TRPV1 in mice. Br. J. Anaesth. 111, 667-672. https://doi.org/10.1093/bja/aet176
- Lee, M. J., Shin, T. J., Lee, J. E., Choo, H., Koh, H. Y., Chung, H. J., Pae, A. N., Lee, S. C. and Kim, H. J. (2010) KST5468, a new Ttype calcium channel antagonist, has an antinociceptive effect on inflammatory and neuropathic pain models. Pharmacol. Biochem. Behav. 97, 198-204. https://doi.org/10.1016/j.pbb.2010.07.018
- Lesage, F., Terrenoire, C., Romey, G. and Lazdunski, M. (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J. Biol. Chem. 275, 28398-28405. https://doi.org/10.1074/jbc.M002822200
- Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. and Honore, E. (1999) Mechano-or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274, 26691-26696. https://doi.org/10.1074/jbc.274.38.26691
-
Marsh, B., Acosta, C., Djouhri, L. and Lawson, S. N. (2012) Leak
$K^+$ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol. Cell. Neurosci. 49, 375-386. https://doi.org/10.1016/j.mcn.2012.01.002 - Mukhida, K., Mendez, I., McLeod, M., Kobayashi, N., Haughn, C., Milne, B., Baghbaderani, B., Sen, A., Behie, L. A. and Hong, M. (2007) Spinal GABAergic transplants attenuate mechanical allodynia in a rat model of neuropathic pain. Stem Cells 25, 2874-2885. https://doi.org/10.1634/stemcells.2007-0326
-
Noel, J., Zimmermann, K., Busserolles, J., Deval, E., Alloui, A., Diochot, S., Guy, N., Borsotto, M., Reeh, P., Eschalier, A. and Lazdunski, M. (2009) The mechano-activated
$K^+$ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 28, 1308-1318. https://doi.org/10.1038/emboj.2009.57 - Ocana, M., Cendan, C. M., Cobos, E. J., Entrena, J. M. and Baeyens, J. M. (2004) Potassium channels and pain: present realities and future opportunities. Eur. J. Pharmacol. 500, 203-219. https://doi.org/10.1016/j.ejphar.2004.07.026
- Oh, U., Hwang, S. W. and Kim, D. (1996) Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci. 16,1659-1667. https://doi.org/10.1523/JNEUROSCI.16-05-01659.1996
- Patel, A. and Honore, E. (2002) The TREK two P domain K+ channels. J. Physiol. 539, 647. https://doi.org/10.1113/jphysiol.2002.014829
- Rodrigues, N., Bennis, K., Vivier D., Pereira, V., Chatelain, F. C., Chapuy E., Deokar, H., Busserolles, J., Lesage, F., Eschalier, A. and Ducki, S. (2014) Synthesis and structure-activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel. Eur. J. Med. Chem. 75, 391-402 https://doi.org/10.1016/j.ejmech.2014.01.049
- Saade, N., Baliki, M., El-Khoury, C., Hawwa, N., Atweh, S., Apkarian, A. and Jabbur, S. J. (2002) The role of the dorsal columns in neuropathic behavior: evidence for plasticity and non-specificity. Neuroscience 115, 403-413. https://doi.org/10.1016/S0306-4522(02)00417-7
- Takeda, M., Tsuboi, Y., Kitagawa, J., Nakagawa, K., Iwata, K. and Matsumoto, S. (2011) Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain. Mol. Pain 7, 5. https://doi.org/10.1186/1744-8069-7-5
Cited by
- ) channel opener, reduces rat dorsal root ganglion neuron excitability pp.00071188, 2017, https://doi.org/10.1111/bph.14098
- TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.00157
- Characterization of temperature-sensitive leak K+ currents and expression of TRAAK, TREK-1, and TREK2 channels in dorsal root ganglion neurons of rats vol.11, pp.1, 2018, https://doi.org/10.1186/s13041-018-0384-5
- MiR-183-5p Alleviates Chronic Constriction Injury-Induced Neuropathic Pain Through Inhibition of TREK-1 vol.43, pp.6, 2018, https://doi.org/10.1007/s11064-018-2529-4
- Role of TREK-1 in Health and Disease, Focus on the Central Nervous System vol.10, pp.None, 2016, https://doi.org/10.3389/fphar.2019.00379
- Early Stimulation of TREK Channel Transcription and Activity Induced by Oxaliplatin-Dependent Cytosolic Acidification vol.21, pp.19, 2016, https://doi.org/10.3390/ijms21197164
- Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond vol.61, pp.1, 2016, https://doi.org/10.1146/annurev-pharmtox-030920-111536
- PKC‐ and PKA‐dependent phosphorylation modulates TREK‐1 function in naïve and neuropathic rats vol.157, pp.6, 2016, https://doi.org/10.1111/jnc.15204