• 제목/요약/키워드: Isolation effect

검색결과 1,045건 처리시간 0.026초

원자력발전소 유출계통의 과도현상에 대한 연구 (A Study on Hydraulic Transients of Letdown System of Nuclear Power Plant)

  • 김민;정장규;김은기;노태선;이성노;유성연
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.493-498
    • /
    • 2002
  • The letdown system of pressurized water reactor (PWR) nuclear fewer plants had experienced instabilities in letdown system due to unacceptable flow characteristics of control valves. The Korean Standard Nuclear Power Plants (KSNPs) have three flow paths in parallel for letdown new control. Each flow path consists of two offices and one isolation valve. This study evaluates the effect of orifice arrangement and valve stroke time of letdown isolation valve on the system transients because sudden flow changes due to valve actuation can generate high pressure peaks in letdown line. A pressure transient analysis has been preformed to evaluate the impact of dynamic transients. This analysis uses MMS which is a simulation code developed by EPRI based on the method of characteristics. The result shows that the pressure peak is reduced in the continuous arrangement but negligible. Additionally, it shows that the stroke time of linear type flog valve greater than 15 seconds can give more stable performance.

  • PDF

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.

Development and experimental study on cable-sliding modular expansion joints

  • Gao, Kang;Yuan, Wan C.;Dang, Xin Z.
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.795-806
    • /
    • 2017
  • According to the characteristics of continuous beam bridges, the relative displacement is too large to collision or even girder falling under earthquakes. A device named Cable-sliding Modular Expansion Joints(CMEJs) that can control the relative displacement and avoid collision under different ground motions is proposed. Working principle and mechanical model is described. This paper design the CMEJs, establish the restoring force model, verify the force model of this device by the pseudo-static tests, and describe and analyze results of the tests, and then based on a triple continuous beam bridge that has different heights of piers, a 3D model with or without CMEJs were established under Conventional System (CS) and Seismic Isolation System (SIS). The results show that this device can control the relative displacement and avoid collisions. The combination of isolation technology and CMEJs can be more effective to achieve both functions, but it need to take measures to prevent girder falling due to the displacement between pier and beam under large earthquakes.

간접전극 양극산화에 의한 다공성 실리콘의 형성 (Formation of Porous Si by Indirect Electrode Anodization)

  • 김순규;장준연
    • 한국진공학회지
    • /
    • 제15권3호
    • /
    • pp.273-279
    • /
    • 2006
  • Si기반 고주파집적회로의 차단재로서 간접전극 양극산화법으로 형성된 다공성 Si을 활용하기 위한 기초 연구로서 전류밀도, 시간에 따른 기공의 크기와 깊이등을 조사하였고 기공 도입 전,후 Si의 격자상수 변화를 측정하여 유발되는 내부응력의 크기를 평가하였다. 기공의 크기와 깊이는 대개 전류밀도와 시간에 따라 증가하였다. 기공이 형성됨에 따라 Si의 격자상수가 증가하여 약 8MPa의 압축응력이 유발되었다. 간접전극 양극산화법으로 형성된 다공성 Si은 공정이간단하고 기공으로 유발되는 내부응력의 크기가 작아 Si YLSI공정 적합성이 우수하므로 고주파 직접회로의 효과적인 차단재로서 적합한 재료로 판단된다.

수진 거리에 따른 방진구의 진동 저감 연구 (A Study on the Vibration Reduction of Borehole by the Receive Distance)

  • 송정언;김승곤;홍웅기
    • 환경영향평가
    • /
    • 제23권3호
    • /
    • pp.169-176
    • /
    • 2014
  • The purpose of this study is to estimate the vibration reduction effect of the borehole which is controlled the vibration propagation in the ground. For this study, we measured the vibration velocity before and after the borehole installation. The results are as follows: The peak particle velocity(PPV) and peak vector sum(PVS) was reduced by the borehole. And also, the deviation of vibration velocity before and after the borehole installation showed large values in longitudinal and vertical component depending on the receive distance, and increased depending on the size of vibration energy. Finally, the vibration isolation efficiency was 25~35 percentage at 1.5m receive distance, and was 4~14 percentage at 3.0m receive distance. It was found that the vibration isolation efficiency was good in small vibration energy, but was not good at long receive distance.

벽식구조 공동주택의 바닥충격음 개선에 대한 연구 (A Study on the Improvement of the Floor Impact Sound Insulation Performance in Wall Slab Type Apartment)

  • 김선우
    • KIEAE Journal
    • /
    • 제12권1호
    • /
    • pp.73-81
    • /
    • 2012
  • Floor impact sound has been most annoying for years among the noises which are produced in apartment. This study aims to analyze the improvement of floor impact sound by comparing the results of the test which was carried out for the wall slab type apartment and moment frame apartment, and also for the effect of advanced vibration isolation layer. Moment frame structure that main structure consists of column and slab has shown better performance for the heavyweight impact sound comparing with wall slab type structure which is general type in Korea. Stiffness of floor system was raised by reinforcing the stiffness of vibration isolation layer, and it was analyzed how much the floor impact sound performance was improved. The result showed that the reinforced floor had better performance than the existing floor system that uses lightweight porous concrete as vibration isolation material. In addition, a system used wire mesh in mortar showed improvement of floor impact sound than a system without wire mesh, and better performance for the frequency bands lower than 160 Hz which causes floor impact problem in wall slab type apartment.

통합제진마운트용 MR 댐퍼의 실험적 성능 평가 (Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount)

  • 성민상;최승복;김철호;이홍기;백재호;한현희;우제관
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1161-1167
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological(MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

연초 버어리종의 자연교잡율과 종자생산에 관련된 몇가지 요인 (Some Management Practices Affecting Outcrossing and Seed Production in Burley Tobacco (Nicotiana tabacum L.))

  • 정석훈;최상주;조천준;김대송;조명조;이승철
    • 한국연초학회지
    • /
    • 제18권2호
    • /
    • pp.126-131
    • /
    • 1996
  • In this study effects of isolation distance, transplanting time of maternal plants, and bagging of flower head with the gauze-cloth bag on the outcrossing of burley tobacco (Nicotiana tabacum L.) were investigated. Also the effect of fertilizer level and control of the number of capsules per plant on seed production and quality were examined. A male sterile line. produced 0.3 to 3.8 capsules Per plant when it was Planted with normally flowering tobacco with the average outcrossing of 7.2 plants, ranging from 2 to 18 out of 20 plants. With the farther the isolation distance between maternal plants and pollen donor plant, the lower the outcrossing occurred. Outcrossing occurred even at the isolation distance of 312 m. When the maternal plants were transplanted 35 days after transplanting the pollen donor ones, the outcrossed plants were not decreased significantly. The bagging of the flower head with the gauze-cloth bas (#0.9∼ 1.0 mm) decreased the outcrossed plants significantly, but couldn't prevent the outcrossing completely. The seed amount per plant was higher in the highly fertilized cultivation. The number of seed capsules per plant affected significantly on seed yield and quality. When the seed capsules was controlled by 30 or 50 capsules per plant, the weight of 1,000 seeds and germination rate were higher than those with 70 or 90 capsules per plant. Key words : Nicotiana tabacum, outcrossing, bagging.

  • PDF

Social Isolation Selectively Increases Anxiety in Mice without Affecting Depression-like Behavior

  • Kwak, Chul-Jung;Lee, Sue-Hyun;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.357-360
    • /
    • 2009
  • It is hypothesized that a number of environmental factors affect animals' behavior. Without controlling these variables, it is very hard for researchers to get not only reliable, but replicable data from various behavioral experiments testing animals' cognitive as well as emotional functions. For example, laboratory mice which had restricted environment showed different synaptic potentiation properties with wild mice (Zhao MG et al., 2009). While performing behavioral experiments, however, it is sometimes inevitable that the researcher changes the animals' environments, as by switching the cages in which experimental animals are housed and separating animals raised together into small experimental groups. In this study, we investigated the effect of environmental changes on mice's emotional behaviors by socially isolating them or reducing the size of their cage. We found that social isolation selectively increases the animals' levels of anxiety, while leaving depression-like behaviors unchanged. On the other hand, alteration of the housing dimensions affected neither their anxiety levels nor their depression-like behaviors. These results suggest that environmental variables may have a prominent impact on experimental animals' emotional behaviors and possibly their psychological states, leading to bias in the behavioral data produced from experiments.

Semi-active leverage-type isolation system considering minimum structural energy

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Chen, Chi-Jen
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.373-387
    • /
    • 2018
  • Semi-active isolation systems based on leverage-type stiffness control strategies have been widely studied. The main concept behind this type of system is to adjust the stiffness in the isolator to match the fundamental period of the isolated system by using a simple leverage mechanism. Although this system achieves high performance under far-field earthquakes, it is unsuitable for near-fault strong ground motion. To overcome this problem, this study considers the potential energy effect in the control law of the semi-active isolation system. The minimal energy weighting (MEW) between the potential energy and kinetic energy was first optimized through a series of numerical simulations. Two MEW algorithms, namely generic and near-fault MEW control, were then developed to efficiently reduce the structural displacement responses. To demonstrate the performance of the proposed method, a two-degree-of-freedom structure was employed as a benchmark. Numerical results indicate that the dynamic response of the structure can be effectively dampened by the proposed MEW control under both far-field and near-fault earthquakes, whereas the structural responses resulting from conventional control methods may be greater than those for the purely passive control method. Moreover, according to experimental verifications, both the generic and near-fault MEW control modes yielded promising results under impulse-like earthquakes. The practicability of the proposed control algorithm was verified.