• Title/Summary/Keyword: Isolation Technology

Search Result 1,841, Processing Time 0.031 seconds

Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount (통합제진마운트용 MR 댐퍼의 실험적 성능 평가)

  • Seong, Min-Sang;Choi, Seung-Bok;Kim, Cheol-Ho;Lee, Hong-Ki;Baek, Jae-Ho;Han, Hyun-Hee;Woo, Je-Kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1161-1167
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological(MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

Experimental Study on Seismic Performance of Base-Isolated Bridge (지진 격리된 교량의 내진성능에 대한 실험적 연구)

  • Chung, Woo-Jung;Yun, Chung-Bang;Kim, Nam-Sik;Seo, Ju-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.144-153
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrates that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation system using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminated rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

Smart Microvibration Control of High-Tech Industry Facilities using Multi-Objective Genetic Algorithm (다목적 유전자알고리즘을 이용한 첨단기술산업 시설물의 스마트 미진동제어)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.37-45
    • /
    • 2013
  • Reduction of microvibration is regarded as important in high-technology facilities with high precision equipments. In this paper, smart control technology is used to improve the microvibration control performance. Mr damper is used to make a smart base isolation system amd fuzzy logic control algorithm is employed to appropriately control the MR damper. In order to develop optimal fuzzy control algorithm, a multi-objective genetic algorithm is used in this study. As an excitation, a train-induced ground acceleration is used for time history analysis and three-story example building structure is employed. Microvibration control performance of passive and smart base isolation systems have been investigated in this study. Numerical simulation results show that the multi-objective genetic algorithm can provide optimal fuzzy logic controllers for smart base isolation system and the smart control system can effectively reduce microvibration of a high-technology facility subjected to train-induced excitation.

Experimental investigation on the effectiveness of under-foundation isolator against train-induced vibrations considering foundation type

  • Ehsan Haghighi;Javad Sadeghi;Morteza Esmaeili
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.121-133
    • /
    • 2024
  • In this paper, the performance of under-foundation isolators against generally annoying train-induced vibrations was examined experimentally. The effect of foundation type on the efficacy of such isolators was investigated for the first time. To this end, laboratory models including a soil container, soil, building with three types of foundation (i.e., single, strip, and mat), and isolator layer were employed. Through various dynamic tests, the effects of foundation type, isolation frequency, and the dominant frequency of train load on the isolator's performance were studied. The results demonstrated that the vibration level in the unisolated building with the strip and mat foundation was, respectively, 29 and 38% lower than in the building with the single foundation. However, the efficacy of the isolator in the building with the single foundation was, respectively, 21 and 40% higher than in the building with the strip and mat foundation. Furthermore, a lower isolation frequency and a higher excitation frequency resulted in greater isolator efficacy. The best vibration suppression occurred when the excitation frequency was close to the floor's natural frequency.

A dual-frequency and dual-polarization antenna with enhanced isolation between two ports using shorted metallic patches (Shorted metallic patch 를 이용하여 두 포트 사이의 고립도를 향상 시킨 이중대역 이중편파 안테나)

  • Lee, Dong-Hyun;Kim, Jae-Hee;Jang, Jong-Hun;Im, Yun-Taek;Park, Wee-Sang
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.67-68
    • /
    • 2006
  • A suspended microstrip line structure over mushroom-like SMPs is designed and is applied to a dual-frequency and dual-polarization microstrip patch antenna. This structure has a distinctive and sharp rejection band and provides near 0 dB insertion loss outside the rejection band. Applying the structure to the conventional DFDP antenna enhanced the isolation between the two ports more than 20 dB. The structure is expected to have a wide range of applications in antennas and filters due to its compactness and integrability in circuits.

  • PDF

Evaluation of Stability using Monte Carlo Simulation in 2 People Isolation Treatment Room of Radiation Iodine (몬테카를로 모의 모사를 이용한 방사성옥소 2인 치료병실의 안전성 평가)

  • Jang, Dong-Gun;Ko, Sung-Jin;Kim, Chang-Soo;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.385-390
    • /
    • 2016
  • Radioactive iodine treatment that uses the 2 people isolation room is to cause unnecessary radiation exposure between patients. This research is to be tested safety of 2 people Isolation treatment room and dose-rate through conservative perspective except physiology characteristic and biology information on the assumption that patient have iodine without excretion in 2 people isolation treatment room. This research shows that 364 keV gamma rays emitted by the radioiodine was to determine that the air layer about 30 cm or lead shield 3 mm a half-layer. In addition, In addition, patients in the distance, and lead shielding, length of hospital stay (48 hours) for external radiation exposure that is received from the other patients, two of treatment as appears to be lower than the legal isolation standard dose less than 5 mSv isolation room effective analyzed that manageable.

Sloped rolling-type bearings designed with linearly variable damping force

  • Wang, Shiang-Jung;Sung, Yi-Lin;Hong, Jia-Xiang
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.129-144
    • /
    • 2020
  • In this study, the idea of damping force linearly proportional to horizontal isolation displacement is implemented into sloped rolling-type bearings in order to meet different seismic performance goals. In addition to experimentally demonstrating its practical feasibility, the previously developed analytical model is further modified to be capable of accurately predicting its hysteretic behavior. The numerical predictions by using the modified analytical model present a good match of the shaking table test results. Afterward, several sloped rolling-type bearings designed with linearly variable damping force are numerically compared with a bearing designed with conventional constant damping force. The initial friction damping force adopted in the former is designed to be smaller than the constant one adopted in the latter. The numerical comparison results indicate that when the horizontal isolation displacement does not exceed the designed turning point (or practically when subjected to minor or frequent earthquakes that seldom have a great displacement demand for seismic isolation), the linearly variable damping force design can exhibit a better acceleration control performance than the constant damping force design. In addition, the former, in general, advantages the re-centering performance over the latter. However, the maximum horizontal displacement response of the linearly variable damping force design, in general, is larger than that of the constant damping force design. It is particularly true when undergoing a horizontal isolation displacement response smaller than the designed turning point and designing a smaller value of initial friction damping force.

Fault Detection and Isolation for the Inverter of BLDC Motor Drive using EKF (EKF를 이용한 BLDC 모터 구동기 인버터의 고장 검출 및 분리)

  • Kim, SunKi;Seong, SangMan;Kang, Kiho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.706-712
    • /
    • 2014
  • The inverters used to drive Brushless DC motors (BLDC) include switching devices such as FETs and the faults in FETs cause severe performance degradation in systems where a BLDC acts as actuator. This paper presents a fault detection and isolation method for the FETs of an inverter for BLDC motor control systems, which is based on the EKF (Extended Kalman filter). Firstly, an equivalent circuit model for a BLDC motor plus its inverter system was derived. Secondly, a state-space equation was established, where the on-resistance of the FETs is expressed as a state variable and the EKF equation estimates the on-resistance. If the estimated resistance differs greatly from the known value, it can be asserted that there is a fault on that FET. Thirdly, the local convergence of the established EKF was proved. Finally, through the experiments, the performance of the proposed method was verified. The results show that the on-resistance is estimated close to the value specified in the FET data sheet in normal operation, whereas the estimated resistance is a much larger value than the normal one in case an FET fault occurs. Therefore, it is confirmed that the proposed fault detection and isolation method works appropriately in real systems.

Isolation of Cytotoxic Compounds from the Leaves of Xanthium strumarium L.

  • Ahn, Jong-Woong;No, Zae-Sung;Ryu, Shi-Yong;Zee, Ok-Pyo;Kim, Seong-Kie
    • Natural Product Sciences
    • /
    • v.1 no.1
    • /
    • pp.1-4
    • /
    • 1995
  • MeOH extract of the leaves of Xanthium strumarium L. were found to have cytotoxic activities against five human tumor cell lines. Cytotoxicity-guided chromatographic fractionation led to the isolation of the ${\alpha}-methylene$ containing sesquiterpenes, xanthatin, 8-epi-xanthatin and 8-epi-tomentosin. 8-epi-Xanthatin was found to be far more cytotoxic than 8-epi-tomentosin, which lacks the conjugated enone moiety present in 8-epi-xanthatin.

  • PDF

A Low Dark Current CMOS Image Sensor Pixel with a Photodiode Structure Enclosed by P-well

  • Han, Sang-Wook;Kim, Seong-Jin;Yoon, Eui-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.102-106
    • /
    • 2005
  • A low dark current CMOS image sensor (CIS) pixel without any process modification is developed. Dark current is mainly generated at the interface region of shallow trench isolation (STI) structure. Proposed pixel reduces the dark current effectively by separating the STI region from the photodiode junction using simple layout modification. Test sensor array that has both proposed and conventional pixels is fabricated using 0.18 m CMOS process and the characteristics of the sensor are measured. The result shows that the dark current of the proposed pixel is 0.93fA/pixel that is two times lower than the conventional design.