• Title/Summary/Keyword: Isolation Circuit

Search Result 249, Processing Time 0.023 seconds

An Interference Isolation Method for Wireless Power and Signal Parallel Transmissions on CPT Systems

  • Zhou, Wei;Su, Yu-Gang;Xie, Shi-Yun;Chen, Long;Dai, Xin;Zhao, Yu-Ming
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.305-313
    • /
    • 2017
  • A novel interference isolation method is proposed by using several designed coils in capacitive power transfer systems as isolation impedances. For each designed coil, its stray parameters such as the inter-turn capacitance, coil resistance and capacitance between the coil and the core, etc. are taken into account. An equivalent circuit model of the designed coil is established. According to this equivalent circuit, the impedance characteristic of the coil is calculated. In addition, the maximum impedance point and the corresponding excitation frequency of the coil are obtained. Based on this analysis, six designed coils are adopted to isolate the interference from power delivery. The proposed method is verified through experiments with a power carrier frequency of 1MHz and a data carrier frequency of 8.7MHz. The power and data are transferred parrallelly with a data carrier attenuation lower than -5dB and a power attenuation on the sensing resistor higher than -45dB.

Optimal Design of a One-chip-type SAW Duplexer Filter Using Micro-strip Line Lumped Elements (마이크로 스트립라인 집중소자를 이용한 일체형 탄성표면파 듀플렉서 필터의 최적설계)

  • 이승희;이영진;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.83-90
    • /
    • 2001
  • Conventional SAW duplexer filters employ a 1/4 wavelength transmission line, which causes difficulty in fabrication of the strip line on the package. Its manufacturing process is also complicated, because it needs integrating process of the separate transmitting filter, receiving filter and isolation circuits. This paper concerns development of a new structure of the duplexer filter that has all the transmitting filter, the receiving filter and the isolation circuit as a one chip device. For composition of the duplexer, we design the component SAW ladder filters and the isolation network consisting of lumped inductor and capacitor elements. Performance of the whole duplexer is optimized by the nonlinear multivariable minimization of a proper target function, and the result is compared with that of commercial filters.

  • PDF

A Study on PFC AC-DC Converter of High Efficiency added in Electric Isolation (절연형 고효율 PFC AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Roan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1349-1355
    • /
    • 2009
  • This paper is studied on a novel power factor correction (PFC) AC-DC converter of high efficiency by soft switching technique. The input current waveform in the proposed converter is got to be a sinusoidal form composed of many a discontinuous pulse in proportion to the magnitude of a ac input voltage under the constant switching frequency. Therefore, the input power factor is nearly unity and the control method is simple. The proposed converter adding an electric isolation operates with a discontinuous current mode (DCM) of the reactor in order to obtain some merits of simpler control, such as fixed switching frequency, without synchronization control circuit used in continuous current mode (CCM). To achieve the soft switching (ZCS or ZVS) of control devices, the converter is constructed with a new loss-less snubber for a partial resonant circuit. It is that the switching losses are very low and the efficiency of the converter is high, Particularly, the stored energy in a loss-less snubber capacitor recovers into input side and increases input current from a resonant operation. The result is that the input power factor of the proposed converter is higher than that of a conventional PFC converter. This paper deals mainly with the circuit operations, theoretical, simulated and experimental results of the proposed PFC AC-DC converter in comparison with a conventional PFC AC-DC converter.

Isolation Circuits Based on Metamaterial Transmission Lines for Multiplexers(Invited Paper)

  • Lee, Hanseung;Itoh, Tatsuo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.141-150
    • /
    • 2013
  • Multiplexers based on isolation circuits made of metamaterial lines are proposed and studied. The new approach provides unique advantageous features beneficial to system designer. For instance, there is no need to modify the filters used in multiplexers. Also, the design process is straightforward. In this paper, two types of multiplexers based on metamaterial isolation circuits are presented, and their operation concepts are explained. Also, theories and design process of isolation circuits are presented to help readers design and fabricate proposed multiplexers. For verifying the concepts, two types of triplexers and two types of quadruplexers are designed and fabricated. All filters used in the multiplexers are commercial surface acoustic wave filters. The measured results are well matched with the simulation results.

An ultra-compact Wilkinson power divider MMIC with an improved isolation characteristic employing RCR design method (RCR 삽입법에 의해 설계된 높은 절연특성을 가지는 초소형 MMIC용 윌킨슨 전력분배기)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.105-113
    • /
    • 2013
  • In this work, using a ${\pi}$-type multiple coupled microstrip line structure (MCMLS) and RCR (Resistor Capacitor Resistor) structure, we fabricated ultra-compact and high isolation Wilkinson power divider on GaAs MMIC (Monolithic Microwave Integrated Circuit). The line length of the Wilkinson power divider was reduced to about ${\lambda}$/46, and its size was 0.304 [$mm^2$], which is 12.1 % of conventional one. Compared with conventional Wilkinson power divider, isolation characteristic of the proposed Wilkinson power divider was highly improved by using RCR insertion method. The proposed Wilkinson power divider showed good RF performances in C/X band.

A Study on Input Current Waveform Analysis for Step Up-Down AC-DC Converter of High Power Factor added Electric Isolation (고역률 스텝 업-다운 절연형 AC-DC 컨버터의 입력전류 파형분석에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Lee, Bong-Seob;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.34-36
    • /
    • 2008
  • This paper is given a full detail of mathematical analyses of input current for novel active type power factor correction(PFC) AC-DC converter of step up-down added electric isolation. These are compared with harmonics components of input current for a conventional PFC converter of electric isolation type. The proposed PFC converter is constructed in using a new loss-less snubber circuit to achieve a soft switching of control device. Also the proposed converter for discontinuous conduction mode(DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity and the control method is simple. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of a conventional PFC converter. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

  • PDF

Design of Double Balanced MMIC Mixer for Ka-band (Ka-band용 Double Balanced MMIC Mixer의 설계 및 제작)

  • 류근관
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.227-231
    • /
    • 2004
  • A MMIC (Monolithic Microwave Integrated Circuit) mixer chip using the schottky diode of InGaAs/CaAs p-HEMT process has been developed for receiver down converter of Ka-band. A different approach of MMIC mixer structure is applied for reducing the chip size by the exchange of ports between IF and LO. This MMIC covers with RF (30.6∼31.0㎓)and IF (20.8∼21.2㎓). According to the on-wafer measurement, the MMIC mixer with miniature size of 3.0mm1.5mm demonstrates conversion loss below 7.8㏈, LO-to-RF isolation above 27㏈, LO-to-IF isolation above 19㏈ and RF-to-IF isolation above 39㏈, respectively.

Small-Sized High-Power PIN Diode Switch with Defected Ground Structure for Wireless Broadband Internet

  • Kim, Dong-Wook
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.84-86
    • /
    • 2006
  • This letter presents a small-sized, high-power single-pole double-throw (SPDT) switch with defected ground structure (DGS) for wireless broadband Internet application. To reduce the circuit size by using a slow-wave characteristic, the DGS is used for the quarter-wave (${\lambda}$/4) transmission line of the switch. To secure a high degree of isolation, the switch with DGS is composed of shunt-connected PIN diodes. It shows an insertion loss of 0.8 dB, an isolation of 50 dB or more, and power capability of at least 50 W at 2.3 GHz. The switch shows very similar performance to the conventional shunt-type switch, but the circuit size is reduced by about 50% simply with the use of DGS patterns.

  • PDF

Single-ended Differential RF Circuit Topologies Utilizing Complementary MOS Devices

  • Kim, Bonkee;Ilku Nam;Lee, Kwyro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.7-18
    • /
    • 2002
  • Single-ended differential RF circuit topologies fully utilizing complementary characteristics of both NMOS and PMOS are proposed, which have inherent advantage of both single-ended and differential circuits. Using this concept, we propose a CCPP (Complementary CMOS parallel push-pull) amplifier which has single-ended input/output with differential amplifying characteristics, leading to more than 30 dB improvement on $IIP_2$. In addition, complementary resistive mixer is also proposed, which provides not only differential IF outputs from single-ended RF input, but much better linearity as well as isolation characteristics. Experimental results using $0.35{\;}\mu\textrm{m}$ CMOS process show that, compared with conventional NMOS resistive mixer, the proposed mixer shows 15 dB better LO-to-IF isolation, 4.6 dB better $IIP_2$, and 4.5 dB better $IIP_3$performances.

RF protection technique of antenna tuning switch in all-off condition (전차단 상태에서 동작하는 안테나 튜닝스위치의 RF 보호기술)

  • Jhon, Heesauk;Lee, Sanghun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1567-1570
    • /
    • 2022
  • This paper, we presents a RF protection technique of antenna switch by improving the power handling capability in worst case environment mode for mobile phone applications without critical payment of circuit performances such as insertion loss, isolation and ACBV (AC breakdown voltage). By applying a additional capacitive path located in front of the antenna in cell-phone, it performs the effective reduction of input power in high voltage standing wave ratio (VSWR) condition. Under the all-path off condition which causes a high VSWR, it achieved 37.7dBm power handling level as high as 5.7dB compared to that of conventional one at 2GHz. In addition, insertion loss and isolation performances were 0.31dB and 42.72dB at 2 GHz, respectively which were almost similar to that of the conventional circuit. The proposed antenna switch was fabricated in 130nm CMOS SOI technology.