• Title/Summary/Keyword: Isolated DC-DC converter

Search Result 211, Processing Time 0.045 seconds

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber Circuits (무손실 스너버적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 캔버터)

  • Kim, E.S.;Kim, T.J.;Joe, K.Y.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1989-1992
    • /
    • 1997
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output is presented. Due to using of the non-dissipative snubber in the primary side, a single stage high-power factor isolated full bridge boost converter has a significant reduction of switching losses in main switching devices and output rectifiers of the primary and secondary side, respectively. The non-dissipative snubber adopted in this study is consisted of a snubber capacitor C. and a snubber inductor $L_r$, a fast recovery snubber diode $D_r$, a commutation diode $D_p$. This paper presents the complete operating principles, theoretical analysis and simulation results.

  • PDF

Soft Switching Single Stage AC-DC Full Bridge Boost Converter (소프트 스위칭 Single Stage AC-DC Full Bridge Boost 컨버터)

  • 김은수;조기연;김윤호;조용현;박경수;안호균;박경수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.493-496
    • /
    • 1999
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output is presented in this paper. Due to the use of a non-dissipative snubber on the primary side, a single stage high-power factor isolated full bridge boost converter has a significant reduction of switching losses in the main switching devices. The non-dissipative snubber adopted in this study consists of a snubber capacitor Cr, a snubber inductor Lr, a fast recovery snubber diode Dr, and a commutation diode Dr, and a commutation diode Dp. This paper presents the complete operating principles, theoretical analysis and experimental results.

  • PDF

Family of Isolated Zero Current Transition PWM Converters

  • Adib, Ehsan;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • In this paper a family of zero current transition PWM converters which employs a simple auxiliary circuit is introduced. This soft switched auxiliary circuit is only composed of a switch and a capacitor. The proposed converters are analyzed and various operating modes of the ZCT flyback converter are discussed. Design considerations are presented and the experimental results of the ZCT flyback converter laboratory prototype are illustrated. The experimental results confirm the validity of theoretical analysis.

Improvement of Power Unbalance Problem due to Distributed Design of Isolated Bidirectional DC-DC Converter for High Voltage (고전압용 절연형 양방향 DC-DC 컨버터의 분산 설계로 인한 전력 불균형 문제의 개선방안)

  • Oh, Seong-Taek;Kwon, Hyuk-Jin;Park, Jeong-Uk;Choi, Seing-Won;Lee, Il-Oun;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.82-89
    • /
    • 2021
  • This study proposes a DAB two-stage series structure with insulated bidirectional DC-DC converter for two-way power transfer between the renewable energy of high voltages (1 kV and above). The proposed circuit transforms the existing DAB converter into a two-stage series structure to reduce the pressure in the switch. The problem of power imbalance occurring in the design of the DAB converter second-stage series is improved by applying the cell balancing method circuit and the common mode coupled inductor using an external flying capacitor instead of reflecting the existing improvement measures, voltage balance control, and inductor current control. In addition, a no-load supercharging sequence is proposed in high voltages and high-speed switching by using the fixed duty output method. This study presents the analysis results through the structure of the proposed circuit, the principle of improving the power imbalance problem, and simulations. Prototypes were manufactured to meet the specifications of input/output voltage of 1700 V, maximum load of 65 kW, and switching frequency of 51kHz, and the validity of the topology was verified using the experimental results and efficiency data.

A Study on Novel Step Up-Down DC/DC Chopper of Isolated Type with High Efficiency (새로운 고효율 절연형 스텝 업-다운 DC/DC 초퍼에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.82-88
    • /
    • 2009
  • This paper is analyzed for a step up-down DC/DC chopper of high efficiency added electric isolation. The converters of high efficiency are generally made that the power loss of the used semiconductor switching devices is minimized. To achieve high efficiency system, the proposed chopper is constructed by using a partial resonant circuit. The control switches using in the chopper are operated with soft switching by partial resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the chopper is high. The proposed chopper is also added electric isolation which is used a pulse transformer. When the power conversion system is required electric isolation, the proposed chopper is adopted with the converter system development of high efficiency. The soft switching operation and the system efficiency of the proposed chopper are verified by digital simulation and experimental results.

  • PDF

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

An Isolated Soft-Switching Bidirectional Buck-Boost Inverter for Fuel Cell Applications

  • Zhang, Lianghua;Yang, Xu;Chen, Wenjie;Yao, Xiaofeng
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.235-244
    • /
    • 2010
  • This paper presents a new isolated soft-switching bidirectional buck-boost inverter for fuel cell applications. The buck-boost inverter combines an isolated DC-DC converter with a conventional inverter to implement buck-boost DC-DC and DC-AC conversion. The main switches achieve zero voltage switching and zero current switching by using a novel synchronous switching SVPWM and the volume of the transformer in the forward and fly-back mode is also minimized. This inverter is suitable for wide input voltage applications due to its high efficiency under all conditions. An active clamping circuit reduces the switch's spike voltage and regenerates the energy stored in the leakage inductance of the transformer; therefore, the overall efficiency is improved. This paper presents the operating principle, a theoretical analysis and design guidelines. Simulation and experimental results have validated the characteristics of the buck-boost inverter.

Redundant Operation of a Parallel AC to DC Converter via a Serial Communication Bus

  • Kanthaphayao, Yutthana;Kamnarn, Uthen;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.533-541
    • /
    • 2011
  • The redundant operation of a parallel AC to DC converter via a serial communication bus is presented. The proposed system consists of three isolated CUK power factor correction modules. The controller for each converter is a dsPIC30F6010 microcontroller while a RS485 communication bus and the clock signal are used for synchronizing the data communication. The control strategy of the redundant operation relies on the communication of information among each of the modules, which communicate via a RS485 serial bus. This information is received from the communication checks of the converter module connected to the system to share the load current. Performance evaluations were conducted through experimentation on a three-module parallel-connected prototype, with a 578W load and a -48V dc output voltage. The proposed system has achieved the following: the current sharing is quite good, both the transient response and the steady state. The converter modules can perform the current sharing immediately, when a fault is found in another converter module. In addition, the transient response occurs in the system, and the output voltages are at their minimum overshoot and undershoot. Finally, the proposed system has a relatively simple implementation for the redundant operation.

High-Frequency Soft-Switching PWM DC-DC Power Converter for Low Voltage Large Current Applications

  • Muraoka Hidekazu;Sakamoto Kenya;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.198-202
    • /
    • 2001
  • This paper presents a novel prototype version of ZCS-PWM forward DC-DC power converter using power MOSFETs which is designed for application specific low voltage large current conversion operation. The soft-switching forward power converter with a high frequency isolated transformer link which can efficiency operate over wide load ranges under two conditions of ZCS as well as active voltage clamped switching is evaluated and discussed on the basis of the simulation and experimental results.

  • PDF

New Single Stage PFC Full Bridge Converter (새로운 단일전력단 역률보상 풀브리지 컨버터)

  • 임창섭;권순걸;조정구;송두익
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.655-660
    • /
    • 2003
  • This paper proposes new single stage power factor correction (PFC) full bridge converter. The proposed converter is combined previous ZVS full bridge DC/DC converter with two inductors, two diodes, two magnetic coupling transformer for PFC. This process of power is isolated from the source and also regulate stable DC output voltage in a category. In this topology, the voltage stress of main switches is reduced by zero voltage switching. Moreover, the proposed converter doesn't need active PFC switch and auxiliarly circuits, like control and gating board, so it could decrease the size and cost and increase the efficiency.