• Title/Summary/Keyword: Isoforms

Search Result 391, Processing Time 0.024 seconds

Inhibitory Effect of Retinoids on Alkaline Phosphatase Isoenzymes Activity in Human Serum

  • Kim, Seung Hee;Moon, Ki-Young
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • Changes in the activity of alkaline phosphatase (ALP) isoenzymes and isoforms in human serum have a major diagnostic value, therefore the regulation of ALP activities is a valuable target for therapeutic interventions. To assess the pharmacological activity of retinoids, i.e., all-trans retinoic acid and 13-cis retinoic acid, their tissue-specific inhibitory effect on human serum ALP activity was elucidated by chemical inhibition methods, heat-sensitive inactivation, and wheat-germ lectin precipitation test. Retinoids showed significant inhibition of the total ALP activity in human serum at a concentration of 5 mM. All-trans retinoic acid (5 mM) and 13-cis retinoic acid (5 mM) inhibited ALP activities by up to 12% and 15%, respectively, compared to that by guanidine hydrochloride (200 mM). L-phenylalanine (100 mM) and urea (30 mM) had no further inhibitory effect on ALP activities in human serum pretreated with retinoids (5 mM). Retinoids significantly inhibited ALP activities by up to 20% compared with that of tetramisole (30 mM). The ALP activities in retinoid-pretreated serum remained unchanged after the heat inactivation process. These results suggest that retinoids are inhibitors of the intestinal ALP isoenzyme. Remarkably, retinoids revealed potent inhibitory activities against ALP in wheat-germ lectin precipitant serum, indicating that they also function as inhibitors of the bone ALP isoform. The results show that retinoids inhibit the specific tissue-derived human serum ALP activities, moreover, the inhibitory effect of retinoids against bone ALP activity suggests their clinical utility as monitoring and prevention of metastasis of bone cancer.

Molecular Analyses of the Metallothionein Gene Family in Rice (Oryza sativa L.)

  • Zhou, Gongke;Xu, Yufeng;Li, Ji;Yang, Lingyan;Liu, Jin-Yuan
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.595-606
    • /
    • 2006
  • Metallothioneins are a group of low molecular mass and cysteine-rich metal-binding proteins, ubiquitously found in most living organisms. They play an important role in maintaining intracellular metal homeostasis, eliminating metal toxification and protecting against intracellular oxidative damages. Analysis of complete rice genome sequences revealed eleven genes encoding putative metallothionein (OsMT), indicating that OsMTs constitute a small gene family in rice. Expression profiling revealed that each member of the OsMT gene family differs not only in sequence but also in their tissue expression patterns, suggesting that these isoforms may have different functions they perform in specific tissues. On the basis of OsMT structural and phylogenetic analysis, the OsMT family was classified as two classes and class I was subdivided into four types. Additionally, in this paper we also present a complete overview of this family, describing the gene structure, genome localization, upstream regulatory element, and exon/intron organization of each member in order to provide valuable insight into this OsMT gene family.

Chelidonine blocks hKv 1.5 channel current

  • Eun, Jae-Soon;Kim, Dae-Keun;Kwak, Young-Geun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.112-112
    • /
    • 2003
  • Voltage-gated $K^{+}$ (Kv) channels represent a structurally and functionally diverse group of membrane proteins. These channels play an important role in determining the length of the cardiac action potential and are the targets for antiarrhythmic drugs. Many $K^{+}$ channel genes have been cloned from human myocardium and functionally contribute to its electrical activity. One of these channels, Kv1.5, is one of the more cardiovascular-specific $K^{+}$ channel isoforms identified to date and forms the molecular basis for an ultra-rapid delayed rectifier $K^{+}$ current found in human atrium. Thus, the blocker of hKv1.5 is expected to be an ideal antiarrhythmic drug for atrial fibrillation. Chelidonine was isolated from Chelidonium majus L. We examined the effect of chelidonine on the hKv1.5 current expressed in Ltk-cells using whole cell mode of patch clamp techniques. Chelidonine selectively inhibited the hKv1.5 current expressed in Ltk-cells in a concentration-dependent manner, whereas did not affect the HERG current expressed in HEK-293 cells. Additionally, chelidonine reduced the tail current amplitude recorded at -50 mV after 250 ms depolarizing pulses to +60 mV, and slowed the deactivation time course resulting in a 'crossover' phenomenon when the tail currents recorded under control conditions and in the presence of chelidonine were superimposed. We found that chelidonine also inhibited the $K^{+}$ current in isolated human atrial myocytes where hKv1.5 channels were predominantly expressed. Furthermore, we examined the effects of chelidonine on the action potentials in rabbit hearts using conventional microelectrode technique. Chelidonine prolonged the action potential durations (APD) of atrial, ventricular myocytes and Purkinje fibers in a dose-dependent manner. However, the effect of chelidonine on atrial APD was frequency-dependent whereas the effect of chelidonine on the APDs of ventricular myocytes and Purkinje fibers was not frequency- dependent. Also, the selective action of chelidonine on heart was more potent than dofetilide, $K^{+}$ channel blocker.

  • PDF

Effect of Nardostachys chinensis on Induction of Differentiation in U937 Monomyelocytic Cells (감송향(甘松香) 물추출물이 U937 백혈병 세포의 분화유도에 미치는 영향)

  • Kim, Jin-Kuk;Ju, Sung-Min;Jeon, Byung-Jae;Yang, Hyun-Mo;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Nardostachyts chinensis (N. chinensis) belonging to the family Valerianaceae has been used to elicit stomachic and sedative effects. The MAPKs are serine/threonine kinases involved in the regulation of various cellular responses, such as cell proliferation, differentiation and apoptosis. The PKC also plays a key role in regulating the response of hematopoietic cells to both physiological and pathological inducers of proliferation and differentiation. This study investigated the signaling pathways on the U937 cell differentiation induced by N. chinensis. N. chinensis induced the differentiation of U937 cells, as shown by increased of differentiation surface antigen CD11b. Activation of ERK increased time-dependently in differentiation of U937 cells induced by N. chinensis, but activations of JNK and p38 were unaffected. Inhibitor of ERK (PD98059) significantly reduced CD11b expression induced by N. chinensis in U937 cells. In addition, N. chinensis increased protein level of PKC ${\beta}$I and PKC ${\beta}$II isoforms, but the protein level of PKC ${\alpha}$ and PKC ${\gamma}$was constant. PKC inhibitors (GF 109203X and H-7) inhibited U937 cell differentiation and the ERK activation induced by N. chinensis. These results indicated that PKC and ERK may be involved in U937 cell differentiation induced by N. chinensis.

A Case of Crigler-Najjar Syndrome Type 2 Diagnosed Using Genetic Mutation Analysis (유전자 검사로 진단된 제2형 Crigler-Najjar 증후군 1예)

  • Kim, Sang-Yee;Lee, Soo-Hyun;Koh, Hong;Lee, Seung-Tae;Ki, Chang-Seok;Kim, Jong-Won;Chung, Ki-Sup
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.11 no.2
    • /
    • pp.219-222
    • /
    • 2008
  • Crigler-Najjar syndrome is a rare inherited disease associated with unconjugated hyperbilirubinemia. It is inherited via an autosomal recessive pattern and is caused by mutation in one of the five exons of the bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) gene. The synthesis of inactive isoforms of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (B-UGT) results in unconjugated hyperbilirubinemia. A 13-year-old boy with jaundice for 4 months was admitted to our hospital. He had unconjugated hyperbilirubinemia with no evidence of infection, hemolysis, or structural abnormalities on abdominal ultrasonography or 99mTc-DISIDA scan. The authors identified a missense mutation of Tyr486Asp in the fifth exon of the UGT1A1 gene and diagnosed the patient with Crigler-Najjar syndrome type II. This is the first reported case of Crigler-Najjar syndrome in a Korean child, and it is also the first reported case of a genetic mutation leading to Crigler-Najjar syndrome in Korea.

  • PDF

Inhibitory Effects of 12 Ginsenosides on the Activities of Seven Cytochromes P450 in Human Liver Microsomes

  • Jo, Jung Jae;Shrestha, Riya;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.106-110
    • /
    • 2016
  • Ginseng, a traditional herbal drug, has been used in Eastern Asia for more than 2000 years. Various ginsenosides, which are the major bioactive components of ginseng products, have been shown to exert numerous beneficial effects on the human body when co-administered with drugs. However, this may give rise to ginsenoside-drug interactions, which is an important research consideration. In this study, acassette assay was performed the inhibitory effects of 12 ginsenosides on seven cytochrome P450 (CYP) isoforms in human liver microsomes (HLMs) using LC-MS/MS to predict the herb-drug interaction. After incubation of the 12 ginsenosides with seven cocktail CYP probes, the generated specific metabolites were quantified by LC-MS/MS to determine their activities. Ginsenoside Rb1 and F2 showed strong selective inhibitory effect on CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP2B6-catalyzed bupropion hydroxylation, respectively. Ginsenosides Rd showed weak inhibitory effect on the activities of CYP2B6, 2C9, 2C19, 2D6, 3A4, and compound K, while ginsenoside Rg3 showed weak inhibitory effects on CYP2B6. Other ginsenosides, Rc, Rf, Rg1, Rh1, Rf, and Re did not show significant inhibitory effects on the activities of the seven CYPs in HLM. Owing to the poor absorption of ginsenosides after oral administration in vivo, ginsenosides may not have significant side effects caused by interaction with other drugs.

Evidence of Multimeric Forms of HSP70 with Phosphorylation on Serine and Tyrosine Residues - Implications for Roles of HSP70 in Detection of GI Cancers

  • Dutta, Anand;Girotra, Mohit;Merchant, Nipun;Nair, Padmanabhan;Dutta, Sudhir Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5741-5745
    • /
    • 2013
  • Background: Heat-shock protein70 (HSP70) are intracellular protein chaperones, with emerging evidence of their association with various diseases. We have previously reported significantly elevated plasma-HSP70 (pHSP70) in pancreatic cancer. Current methods of pHSP70 isolation are ELISA-based which lack specificity due to cross-reactivity by similarities in the amino-acid sequence in regions of the protein backbone resulting in overestimated HSP70 value. Materials and Methods: This study was undertaken to develop a methodology to capture all isoforms of pHSP70, while further defining their tyrosine and serine phosphorylation status. Results: The methodology included gel electrophoresis on centrifuged supernatant obtained from plasma incubated with HSP70 antibody-coupled beads. After blocking non-specific binding sites, blots were immunostained with monoclonal-antibody specific for human-HSP70, phosphoserine and phosphotyrosine. Conclusions: Our novel immunocapture approach has distinct advantages over the commercially available methods of pHSP70 quantification by allowing isolation of molecular aggregates of HSP70 with additional ability to precisely distinguish phosphorylation state of HSP70 molecules at serine and tyrosine residues.

Calcium Signaling-mediated and Differential Induction of Calmodulin Gene Expression by Stress in Oryza sativa L.

  • Phean-o-pas, Srivilai;Punteeranurak, Pornpimon;Buaboocha, Teerapong
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.432-439
    • /
    • 2005
  • $Ca^{2+}$/calmodulin transduction pathways have been implicated in mediating stress response and tolerance in plants. Here, three genes encoding calmodulin (Cam) members of the EF-hand family of $Ca^{2+}$-binding proteins were identified from Oryza sativa L. databases. Complementary DNA for each of the calmodulin genes, OsCam1, OsCam2, and OsCam3 were sequenced. OsCam1 and OsCam2 encode a conventional 148-amino acid calmodulin protein that contains four characteristic $Ca^{2+}$-binding motifs. OsCam3 encode a similar protein with a 38-amino-acid extension containing a putative prenylation site (CVIL) at the carboxyl terminus. RT-PCR showed that each of the genes is expressed in leaves and roots of 2-week old rice seedlings. By RNA gel blot analysis, OsCam1 mRNA levels strongly increased in response to NaCl, mannitol and wounding treatments. In contrast, OsCam2 mRNA levels were relatively unchanged under all conditions investigated. NaCl treatment and wounding also increased the OsCam3 mRNA level, but in a more transient manner. Our results indicate that although the expression of genes encoding different calmodulin isoforms is ubiquitous, they are differentially regulated by various stress signals. In addition, we have demonstrated that the calcium-channel blocker lanthanum chloride inhibited the induction of OsCam1 gene expression by both NaCl and mannitol treatments. These results suggest that osmotic stress induced expression of OsCam1 gene requires the $[Ca^{2+}]_{cyt}$ elevation that is known to occur in response to these stimuli.

AUA as a Translation Initiation Site In Vitro for the Human Transcription Factor Sp3

  • Hernandez, Eric Moore;Johnson, Anna;Notario, Vicente;Chen, Andrew;Richert, John R.
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.273-282
    • /
    • 2002
  • Sp3 is a bifunctional transcription factor that has been reported to stimulate or repress the transcription of numerous genes. Although the size of Sp3 mRNA is 4.0kb, the size of the known Sp3 cDNA sequence is 3.6kb. Thus, Sp3 functional studies have been performed with an artificially introduced start codon, and thus an amino-terminus that differs from the wild-type. Ideally, full-length cDNA expression vectors with the appropriate start codon should be utilized for these studies. Using 5'rapid amplification of cDNA ends, a full-length Sp3 cDNA clone was generated and the sequence verified in nine cell lines. No AUG initiation codon was present. However, stop codons were present in all three frames 5' to the known coding sequence. In vitro translation of this full-length cDNA clone produced the expected three isoforms-one at 100 kDa and two in the mid 60 kDa range. Electrophoretic mobility shift assays showed that the protein products had the ability to bind to the Sp1/3 consensus sequence. In vitro studies, using our Sp3 clone and site directed mutagenesis, identified the translation initiation site for the larger isoform as AUA. AUA has not been previously described as an endogenous initiation codon in eukaryotes.

Minimizing a QTL region for intramuscular fat content by characterizing the porcine Phosphodiesterase 4B (PDE4B) gene

  • Kim, Jae-Hwan;Ovilo, Cristina;Park, Eung-Woo;Fernndez, Almudena;Lee, Jun-Heon;Jeon, Jin-Tae;Lee, Jung-Gyu
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.466-471
    • /
    • 2008
  • Three isoforms of pig PDE4B were cloned and classified as two forms: PDE4B1 and PDE4B3, which contain UCR1 and UCR2; and PDE4B2, which contains only UCR2. The amino acid sequences of each isoform showed good conservation in human and rat. PDE4B2 is expressed in a wide range of tissues, but PDE4B1 and PDE4B3 are not. Using an informative SNP for the Iberian x Landrace intercross detected from intron 12, a linkage map was constructed. The location of PDE4B was estimated at 123.6 cM outside of the QTL-CI (124-128 cM) for IMF. However, the QTL-CI for IMF was reconfirmed with high significance, and its position was narrowed down to an interval of 4 cM (the region defined by markers PDE4B and SW1881). Using radiation hybrid mapping, LEPR, LEPROT, DNAJC6, AK3L1 and AK3L2 were selected as positional and/or functional candidates related to the QTL.