References
- Abasht, B., Dekkers, J. C. M. and Lamont, S. J. (2006) Review of Quantitative trait loci identified in the chicken. Poultry Sci. 85, 2079-2096. https://doi.org/10.1093/ps/85.12.2079
- Karamichou, E., Richardson, R. I., Nute, G. R., Gibson, K. P. and Bishop, S. C. (2006) Genetic analyses and quantitative trait loci detection, using a partial genome scan, for intramuscular fatty acid composition in Scottish Blackface sheep. J. Anim. Sci. 84, 3228-3238. https://doi.org/10.2527/jas.2006-204
- Khatkar, M. S., Thomson, P. C., Tammen, I. and Paadsma, H. W. (2004) Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 36, 163-190. https://doi.org/10.1186/1297-9686-36-2-163
- Bidanel, J. P. and Rothschild, M. F. (2002) Current status of quantitative trait locus mapping in pigs. Pig News Info. 23, 39N-53N.
- Nagamine, Y., Haley, C. S., Sewalem, A. and Visscher, P. M. (2003) Quantitative trait loci variation for growth and obesity between and within lines of pigs (Sus scrofa). Genetics 164, 629-635.
- Rohrer, G. A., Thallman, R. M., Shackelford, S., Wheler, T. and Koohmaraie, M. (2006) A genome scan for loci affecting pork quality in a Duroc-Landrace F population. Anim. Genet. 37, 17-27. https://doi.org/10.1111/j.1365-2052.2005.01368.x
- Rothschild, M. F., Hu, Z. I. and Jiang, Z. (2007) Advances in QTL mapping in pigs. Int. J. Biol. Sci. 3, 192-197.
- Ovilo, C., Fernandez, A., Noguera, J. L., Barragan, C., Leton, R., Rodriguez, C., Mercade, A., Alves, E., Folch, J. M., Varona, L. and Toro, M. (2005) Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross. Genet. Res. 85, 57-67. https://doi.org/10.1017/S0016672305007330
- Kim, J. H., Lim, H. T., Park, E. W., Ovilo, C., Lee, J. H. and Jeon, J. T. (2006) A gene-based radiation hybrid map of the pig chromosome 6q32 region associated with a QTL for fat deposition traits. Anim. Genet. 37, 522-523 https://doi.org/10.1111/j.1365-2052.2006.01499.x
- Kim, J, H., Lim, H. T., Park, E. W., Rodriguez, C., Silio, L., Varona, L., Mercade, A., Jeon, J. T. and Ovilo, C. (2006) Polymorphisms in the promoter region of the porcine acyl- coA dehydrogenase, medium-chain (ACADM) gene have no effect on fat deposition traits in a pig Iberian x Landrace cross. Anim. Genet. 37, 430-431. https://doi.org/10.1111/j.1365-2052.2006.01490.x
- Houslay, M. D., Sullivan, M. and Bolger, G. B. (1998) The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family; Intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Adv. Pharmacol. 44, 225-342. https://doi.org/10.1016/S1054-3589(08)60128-3
- Huston, E., Lumb, S., Russell, A., Catterall, C., Ross, A. H., Steele, M. R., Bolger, G. B., Perry, M. J., Owens, R. J. and Houslay, D. (1997) Molecular cloning and transient expression in COS7 cells of a novel human PDE4B cAMP-specific phosphodiesterase, HSPDE4B3. Biochem. J. 328, 549-558. https://doi.org/10.1042/bj3280549
- Shepherd, M., McSorley, T., Olsen, A. E., Johnston, L A., Thomson, N. C., Baillie, G. S., Houslay, M. D. and Bolger, G. B. (2003) Molecular cloning and subcellular distribution of the novel PDE4B cAMP-specific phosphodiesterase isoform. Biochem. J. 370, 429-438. https://doi.org/10.1042/BJ20021082
- Conti, M., Richter, W., Mehats, C., Livera, G., Park, J. Y. and Jin, C. (2003) Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signals. J. Biol. Chem. 278, 5493-5496. https://doi.org/10.1074/jbc.R200029200
- Hoffmann, R., Wilkinson, I. R., McCallum, J. F., Engels, P. and Houslay, M. D. (1998) cAMP-specific phosphodiesterase HSPDE4D3 mutants which mimic activation and changes in rolipram inhibition triggered by protein kinase A phosphorylation of Ser-54: generation of a molecular model. Biochem. J. 333, 139-149. https://doi.org/10.1042/bj3330139
- Sette, C. and Conti, M. (1996) Phosphorylation and activation of a cAMP-specific phosphoesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J. Biol. Chem. 274, 16526-16534.
- Baillie, G, S., MacKenzie, S, J., McPhee, I. and Houslay, M. D. (2000) Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cAMP-specific phosphoesterases. Br. J. Pharmacol. 131, 811-819. https://doi.org/10.1038/sj.bjp.0703636
- Hoffmann, R., Baillie, G. S., Mackenzie, S. J., Yarwood, S. J. and Houslay, M. D. (1999) The MAP kinase ERK2 inhibits the cAMP-specific phosphoesterase, HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 18, 893-903. https://doi.org/10.1093/emboj/18.4.893
- Bolger, G. B., Rodgers, L. and Riggs, M. (1994) Differential CNS expression of alternative mRNA isoforms of the mammalian genes encoding cAMP-specific phosphodiesterase. Gene 149, 237-244. https://doi.org/10.1016/0378-1119(94)90155-4
- Iona, S., Cuomo, M., Bushnik, T., Naro, F., Sette, C., Hess, M., Shelton, E. R. and Conti, M. (1998) Characterization of the rolipram-sensitive, cyclic AMP-specific phosphodiesterases: identification and differential expression of immunologically distinct forms in the rat brain. Mol. Pharmacol. 53, 23-32. https://doi.org/10.1124/mol.53.1.23
- McPhee, I., Cochran, S. and Houslay, M. D. (2001) The novel long PDE4A10 cyclic AMP phosphodiesterase shows a pattern of expression with brain that is distinct from the long PDE4A5 and short PDE4A1 isoforms. Cell Signalling 13, 911-918. https://doi.org/10.1016/S0898-6568(01)00217-0
- Yerle, M., Pinton, P., Delcros, C., Arnal, N., Milan, D. and Robic, A. (2002) Generation and characterization of a 12,000-rad radiation hybrid panel for fine mapping in pig. Cytogenet. Genome Res. 97, 219-228. https://doi.org/10.1159/000066616
- Boehnke, M., Lange, K. and Cox, D. R. (1991) Statistical methods for multipoint radiation hybrid mapping. Am. J. Hum. Genet. 49, 1174-1188.
- Zhong, J., Wang, Y., Qiu, X., Mo, X., Liu, Y., Li, T., Song, Q., Ma, D. and Han, W. (2006) Characterization and expression profile of CMTM3/CKLFSF3. J. Biochem. Mol. Biol. 39, 537-545. https://doi.org/10.5483/BMBRep.2006.39.5.537
- Tang, W., Yuan, J., Chen, X., Gu, X., Luo, K., Li, J., Wan, B., Wang, Y. and Yu, L. (2006) Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway. J. Biochem. Mol. Biol. 39, 626-635. https://doi.org/10.5483/BMBRep.2006.39.5.626
- Green, P., Falls, K. and Crooks, S. (1990) Documentation of CRIMAP. Unpublished mimeo (http://Biobase.Embnetut/ crimap).
- Zhao, H., Rothschild, M. F., Fernando, R. L. and Dekkers, J. C. M. (2003) Tests of candidate genes in breed cross populations for QTL mapping in livestock. Mamm. Genome 14, 472-482. https://doi.org/10.1007/s00335-002-2215-y
- Perez-Enciso, M. and Mizztal, I. (2004) Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20, 2792-2798. https://doi.org/10.1093/bioinformatics/bth331
- Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positive- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
Cited by
- ZNF424, a novel human KRAB/C2H2 zinc finger protein, suppresses NFAT and p21 pathway vol.43, pp.3, 2010, https://doi.org/10.5483/BMBRep.2010.43.3.212
- Understanding the use of Bayes factor for testing candidate genes vol.127, pp.1, 2010, https://doi.org/10.1111/j.1439-0388.2009.00826.x
- Genome-wide QTL mapping of nine body composition and bone mineral density traits in pigs vol.46, pp.1, 2014, https://doi.org/10.1186/s12711-014-0068-2
- Single nucleotide polymorphism association study for backfat and intramuscular fat content in the region between SW2098 and SW1881 on pig chromosome 61 vol.90, pp.4, 2012, https://doi.org/10.2527/jas.2011-4228