• Title/Summary/Keyword: Isobaric

Search Result 67, Processing Time 0.021 seconds

Differential Protein Quantitation in Mouse Neuronal Cell Lines using Amine-Reactive Isobaric Tagging Reagents with Tandem Mass Spectrometry

  • Cho, Kun;Park, Gun-Wook;Kim, Jin-Young;Lee, Sang-Kwang;Oh, Han-Bin;Yoo, Jong-Shin
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.25-28
    • /
    • 2010
  • The high-throughput identification and accurate quantification of proteins are essential strategies for exploring cellular functions and processes in quantitative proteomics. Stable isotope tagging is a key technique in quantitative proteomic research, accompanied by automated tandem mass spectrometry. For the differential proteome analysis of mouse neuronal cell lines, we used a multiplexed isobaric tagging method, in which a four-plex set of amine-reactive isobaric tags are available for peptide derivatization. Using the four-plex set of isobaric tag for relative and absolute quantitation (iTRAQ) reagents, we analyzed the differential proteome in several stroke time pathways (0, 4, and 8 h) after the mouse neuronal cells have been stressed using a glutamate oxidant. In order to obtain a list of the differentially expressed proteins, we selected those proteins which had apparently changed significantly during the stress test. With 95% of the peptides showing only a small variation in quantity before and after the test, we obtained a list of eight up-regulated and four down-regulated proteins for the stroke time pathways. To validate the iTRAQ approach, we studied the use of oxidant stresses for mouse neuronal cell samples that have shown differential proteome in several stroke time pathways (0, 4, and 8 h). Results suggest that histone H1 might be the key protein in the oxidative injury caused by glutamate-induced cytotoxicity in HT22 cells.

Comprehensive Analysis of Proteomic Differences between Escherichia coli K-12 and B Strains Using Multiplexed Isobaric Tandem Mass Tag (TMT) Labeling

  • Han, Mee-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2028-2036
    • /
    • 2017
  • The Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for scientific research and biotechnological applications. However, omics analyses have revealed that E. coli K-12 and B exhibit notably different genotypic and phenotypic attributes, even though they were derived from the same ancestor. In a previous study, we identified a limited number of proteins from the two strains using two-dimensional gel electrophoresis and tandem mass spectrometry (MS/MS). In this study, an in-depth analysis of the physiological behavior of the E. coli K-12 and B strains at the proteomic level was performed using six-plex isobaric tandem mass tag-based quantitative MS. Additionally, the best lysis buffer for increasing the efficiency of protein extraction was selected from three tested buffers prior to the quantitative proteomic analysis. This study identifies the largest number of proteins in the two E. coli strains reported to date and is the first to show the dynamics of these proteins. Notable differences in proteins associated with key cellular properties, including some metabolic pathways, the biosynthesis and degradation of amino acids, membrane integrity, cellular tolerance, and motility, were found between the two representative strains. Compared with previous studies, these proteomic results provide a more holistic view of the overall state of E. coli cells based on a single proteomic study and reveal significant insights into why the two strains show distinct phenotypes. Additionally, the resulting data provide in-depth information that will help fine-tune processes in the future.

The isobaric effect correction and measurement of the Ru isotopes by thermal ionization mass spectrometry (열 이온화 질량분석기를 이용한 Ru 동위원소 측정 및 동중원소 영향 보정)

  • Jeon, Young-Shin;Kim, Jung-Suk;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.498-504
    • /
    • 2010
  • It is very difficult to get stable ion peak intensity of ruthenium by thermal ionization mass spectrometry because of its high ionization potential and high volatility of its oxides which causes to lose much of ruthenium ions, so the intensity of the signal decrease quickly. Accordingly, a study was performed in oder to increase the ionization efficiency and to prevent sample losses due to volatilization and to check with isobaric effect by impurities in filament for the measurement of ruthenium isotopes. Both single filament and double filament were tested. The former was proved to be more efficient for the stable and strong intensity of signal and revealed less isobaric effect from the molybdenum (Mo) as a filament impurity. Also, when the temperature of filament increased too high, the isobaric effect from Mo greatly appeared. That is, Mo impurity from filament gave a serious effect for measuring the ruthenium isotopes. It was proved to be of importance that filament current should be slowly increased with time interval. Finally, ruthenium isotopes were accurately measured by correction with measuring $^{94}Mo/^{99}Ru$.

The isobaric effect on the measurement of Gd isotopes by thermal ionization mass spectrometry (열이온화 질량분석기를 이용한 Gd 동위원소 측정에서 동중원소 영향)

  • Jeon, Young-Shin;Park, Jong-Ho;Joe, Kih-Soo;Han, Sun-Ho;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.415-421
    • /
    • 2009
  • A study was performed to investigate the isobaric effects of impurities in isotope measurement of gadolinium by TIMS. Especially, the ratio of $^{155}Gd/^{158}Gd$ showed the higher value than that of natural gadolinium and also decreased as the measuring time increased. This phenomenon is considered to be due to the oxide form of La ($LaO^+$, m/z=155) causing to create a serious bias on the measurement of $^{155}Gd$ abundance by La as an impurity, and due to $LaO^+$ produced more than the $Gd^+$ in the early time which disappears as the time goes on because of lower melting point and ionization potential of La than Gd. Although isobaric effects from Ba($BaO^+$), Ce($CeO^+$), Sm($SmO^+$), La($LaO^+$), and $K_4{^+}$(m/z=156)-cluster were detected even when blank rhenium filaments were used, these could be avoided by preconditioning(baking out) the filament. And we found that the measurement of $GdO^+$ instead of $Gd^+$ is more suitable in avoiding the isobaric effect from impurities such as La, Ce and Ba in the measurement of Gd isotope only in case of absence or extremely low level of Yb, Sm, Dy, Er, Lu.

Attenuation of Background Molecular Ions and Determination of Isotope Ratios by Inductively Coupled Plasma Mass Spectrometry at Cool Plasma Condition

  • 박창준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.706-710
    • /
    • 1997
  • Isotope ratios of K, Ca, Cr and Fe are measured at cool plasma condition generated using high carrier flow rate and relatively low RF power of 900 W. Background molecular ions are suppressed to below 100 counts which give isobaric interference to the analytes. The background ions show different attenuation characteristics at increased carrier flow rate and hence for each element different carrier flow rate should be used to measure isotope ratios without isobaric interference. Isotope ratios are measured at both scan and peak-hopping modes and compared with certified or accepted ratios. The measured isotope ratios show some mass discrimination against low mass due to low ion energy induced from a copper shield to eliminate capacitive coupling of plasma with load coil.

Effects of the Concentration and the Temperature on the Thermophysical Properties of Purely-Viscous Non-Newtonian Fluid (순수점성 비뉴톤유체의 물성치들에 대한 농도 및 온도의 영향)

  • 조금남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.670-680
    • /
    • 1994
  • The thermophysical properties of Non-Newtonian fluid as the function of the temperature and the concentration are needed in many rheological heat transfer and fluid mechanics problems. The present work investigated the effects of the concentration and the temperature on the thermophysical properties of purely-viscous Non-Newtonian fluids such as the isobaric thermal expansion coefficient, density, zero-shear-rate viscosity, and zero-shear-rate dynamic viscosity within the experimental temperature range from $25^{\circ}C$ to $55^{\circ}C$. The densities of the test fluids were determined as the function of the temperature by utilizing a reference density and the least square equation for the measured isobaric thermal expansion coefficient. As the concentration of purely-viscous Non-Newtonian fluid was increased up to 10,000 wppm, the densities were proportionally increased up to 0.4%. The zero-shear-rate viscosities of test fluids were measured before and after the measurements of the first thermal expansion coefficients and the densities of Non-Newtonian fluid. Even though they were changed up to approximately 22% due to thermal aging and cycling, they had no effects on the thermal expansion coefficients and the densities of Non-Newtonian fluid. The zero-shear-rate dynamic viscosities for purely-viscous Non-Newtonian fluids were compared with the values for distilled water. They showed the similar trend with the zero-shear-rate viscosities due to small differences in the densities for both distilled water and purely-viscous Non-Newtonian fluid.

Isobaric Vapor-Liquid Equilibrium of Toluene and Cresol Systems (톨루엔-크레졸의 정압 기-액 평형)

  • Kang, Dong-Yuk;Jang, Hoi-Gu;Han, Chang-Nam;Rho, Seon-Gyun;Cho, Dong Lyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.755-761
    • /
    • 2009
  • To a first approximation, phase behavior of a system becomes increasingly skew in proportion to the boiling point difference of system-forming constituents. Therefore, phase behavior data of a system of a large boiling point difference are to be experimentally measured for thorough understanding of the thermodynamic characteristics of such system. In this work, isobaric vapor-liquid equilibrium of a mixture consisting of toluene and cresol, which shows a large boiling point difference of nearly $100^{\circ}C$ and is consequently expected to be considerably nonideal, was measured by using a recirculating equilibrium cell at various subatmospheric pressures ranging from 10 kPa to 60 kPa. The measured VLE data were correlated with NRTL and UNIQUAC models in a satisfactory manner and the accompanying thermodynamic consistency test represented soundness of the measurements. In addition, the excess molar volume of the mixture was also measured with a vibrating densitometer and correlated with a Redlich-Kister polynomial. A negative excess volume prevailed over the whole concentration range, which indicates a favorable attraction between toluene and cresol isomers and results in an extensive miscibility.

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Bromochloromethane System at Subatmospheric Pressures (감압하에서 1-propanol과 Bromochloromethane의 정압 기-액 평형)

  • Jang, Hoi-Gu;Kang, Choon-Hyoung
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.295-300
    • /
    • 2010
  • A binary system of 1-propanol and bromochloromethane which exhibits an azeotropic point and a considerable nonideal phase behavior probably due to the large boiling point difference is not amenable in the actual chemical processes such as the distillation tower and absorber. Therefore, experimental data of phase behavior data of this mixture are indispensable in understanding the inherent thermodynamic characteristics for an efficient application of the system in the industrial processes. In this work, the isobaric vapor-liquid equilibrium of a binary mixture consisting of 1-propanol and bromochloromethane was measured by using a recirculating equilibrium cell at various pressures ranging from 30 to 70 kPa. The measured VLE data were correlated in a satisfactory manner by using the UNIQUAC and NRTL models along with the thermodynamic consistency test based on Gibbs/Duhem equation. In addition, the excess molar volume of the mixture was also measured by using a vibrating densitometer and correlated with a Redlich-Kister polynomial.

Equilibrium Thermodynamics of Chemical Reaction Coupled with Other Interfacial Reactions Such as Charge Transfer by Electron, Colligative Dissolution and Fine Dispersion: A Focus on Distinction between Chemical and Electrochemical Equilibria

  • Pyun, Su-Il;Lee, Sung-Jai;Kim, Ju-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.227-241
    • /
    • 2008
  • This article involves a unified treatment of equilibrium thermodynamics of the chemical reaction coupled with other interfacial (phase boundary) reactions. The modified (restrictive) chemical potential ${\mu}_k^+$, such as electrochemical potential, hydrostatic-chemical (mechanochemical) potential (exceptionally in the presence of the pressure difference) and surface-chemical potential, was first introduced under the isothermal and isobaric conditions. This article then enlightened the equilibrium conditions in case where the release of chemical energy is counterbalanced by the supply of electrical energy, by the supply of hydrostatic work (exceptionally in the presence of ${\Delta}p$), and finally by the release of surface energy, respectively, at constant temperature T and pressure p in terms of the modified chemical potential ${\mu}_k^+$. Finally, this paper focussed on the difference between chemical and electrochemical equilibria based upon the fundamentals of the isothermal and isobaric equilibrium conditions described above.

Experimental Study on the Isobaric Thermal Expansion Coefficient Density and Zero-shear-rate Viscosity of Viscoelastic Fluid (점탄성 유체의 정압 열팽창계수, 밀도 및 전단속도 0에서의 점동에 대한 실험연구)

  • 최민구
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.181-191
    • /
    • 1995
  • 점탄성유체의 물성치들 중 정압열팽창계수 및 밀도는 자연대류 열전달 연구에 전단 속도 0에서의 점도는 점탄성유체에 대한 모델들 사용 시 필요하다. 본 연구에서는 점탄성유 체이며 마찰 감소 첨가제, 유전자 분리용액동으로 사용하는 Separan AP-273 용액의 정압열 팽창계수, 밀도 및 전단속도 0에서의 점도에대한 농도 및 온도의 영향을 조사하였다. 작동유 체의 물성치들은 10~6$0^{\circ}C$의 온도범위와 100~20,000wppm의 농도범위에서 측정되었다. 작 동유체의 물성치들에 미치는 열주기와 노화의 영향을 조사하기 위해서 정압열팽창계수와 전 단속도 0에서의 점도를 교대로 두 번씩 측정했다. 정압열팽창계수 및 밀도를 측정하는 장치 의 측정 정밀도는 증류수에 대한 측정치와 문헌에 나타난 자료를 비교하여 얻었고 이는 $\pm$ 2%이내였다. Separan AP-273용액의 정압열팽창계수 및 밀도는 증류수의 값들로 대치될수 있다. 작동유체의 정압열팽창계수와 밀도는 열주기와 노화의 영향을 받지 않았다. 낙하식 점 도계를 사용해 측정한 겉보기점도 값들을 나타내느 flow curve에서 전단속도가 0이 되는방 향으로 겉보기점도를 외삽시켜 Separan AP-273용액에 대한 전단속도0에서의 점도를 얻었 다. 정압열팽창계수 측정 전후에 측정한 작동유체에 대한 전단속도 0에서의 점도는 열주기 와 노화로 인해 퇴화되었다.

  • PDF