• 제목/요약/키워드: Ishikawa iteration process

검색결과 16건 처리시간 0.019초

ITERATION PROCESSES WITH ERRORS FOR NONLINEAR EQUATIONS INVOLVING $\alpha$-STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • 제17권2호
    • /
    • pp.349-365
    • /
    • 2001
  • Let X be a real Banach space and $A:X{\rightarrow}2^X$ be an $\alpha$-strongly accretive operator. It is proved that if the duality mapping J of X satisfies Condition (I) with additional conditions, then the Ishikawa and Mann iteration processes with errors converge strongly to the unique solution of operator equation $z{\in}Ax$. In addition, the convergence of the Ishikawa and Mann iteration processes with errors for $\alpha$-strongly pseudo-contractive operators is given.

  • PDF

ISHIKAWA AND MANN ITERATION METHODS FOR STRONGLY ACCRETIVE OPERATORS

  • JONG YEOUL PARK;JAE UG JEONG
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.765-773
    • /
    • 1998
  • Let E be a smooth Banach space. Suppose T : E longrightarrow E is a strongly accretive map. It is proved that each of the two well known fixed point iteration methods (the Mann and Ishikawa iteration methods), under suitable conditions, converges strongly to a solution of the equation Tx = f.

  • PDF

ISHIKAWA AND MANN ITERATION METHODS FOR STRONGLY ACCRETIVE OPERATORS

  • JAE UG JEONG
    • Journal of applied mathematics & informatics
    • /
    • 제4권2호
    • /
    • pp.477-485
    • /
    • 1997
  • Let E be a smooth Banach space. Suppose T:$E \rightarrow E$ is a strongly accretive map. It is proved that each of the two well known fixed point iteration methods (the Mann and ishikawa iteration methods), under suitable conditions converges strongly to a solution of the equation $T_x=f$.

THE CONVERGENCE THEOREMS FOR COMMON FIXED POINTS OF UNIFORMLY L-LIPSCHITZIAN ASYMPTOTICALLY Φ-PSEUDOCONTRACTIVE MAPPINGS

  • Xue, Zhiqun
    • 대한수학회보
    • /
    • 제47권2호
    • /
    • pp.295-305
    • /
    • 2010
  • In this paper, we show that the modified Mann iteration with errors converges strongly to fixed point for uniformly L-Lipschitzian asymptotically $\Phi$-pseudocontractive mappings in real Banach spaces. Meanwhile, it is proved that the convergence of Mann and Ishikawa iterations is equivalent for uniformly L-Lipschitzian asymptotically $\Phi$-pseudocontractive mappings in real Banach spaces. Finally, we obtain the convergence theorems of Ishikawa iterative sequence and the modified Ishikawa iterative process with errors.

An Ishikawa Iteration Scheme for two Nonlinear Mappings in CAT(0) Spaces

  • Sokhuma, Kritsana
    • Kyungpook Mathematical Journal
    • /
    • 제59권4호
    • /
    • pp.665-678
    • /
    • 2019
  • We construct an iteration scheme involving a hybrid pair of mappings, one a single-valued asymptotically nonexpansive mapping t and the other a multivalued nonexpansive mapping T, in a complete CAT(0) space. In the process, we remove a restricted condition (called the end-point condition) from results of Akkasriworn and Sokhuma [1] and and use this to prove some convergence theorems. The results concur with analogues for Banach spaces from Uddin et al. [16].

APPROXIMATING COMMON FIXED POINTS FOR TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Kim, Gang-Eun
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.71-82
    • /
    • 2012
  • In this paper, we first show the weak convergence of the modified Ishikawa iteration process with errors of two total asymptotically nonexpansive mappings, which generalizes the result due to Khan and Fukhar-ud-din [1]. Next, we show the strong convergence of the modified Ishikawa iteration process with errors of two total asymptotically nonexpansive mappings satisfying Condition ($\mathbf{A}^{\prime}$), which generalizes the result due to Fukhar-ud-din and Khan [2].

ITERATIVE PROCESS WITH ERRORS FOR m-ACCRETIVE OPERATORS

  • Baek, J.H;Cho, Y.J.;Chang, S.S
    • 대한수학회지
    • /
    • 제35권1호
    • /
    • pp.191-205
    • /
    • 1998
  • In this paper, we prove that the Mann and Ishikawa iteration sequences with errors converge strongly to the unique solution of the equation x + Tx = f, where T is an m-accretive operator in uniformly smooth Banach spaces. Our results extend and improve those of Chidume, Ding, Zhu and others.

  • PDF

STRONG CONVERGENCE OF HYBRID METHOD FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS AND SEMIGROUPS

  • Liu, Li;Wang, Lijing;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.669-680
    • /
    • 2011
  • In this paper, some strong convergence theorems are obtained for hybrid method for modified Ishikawa iteration process of asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups in Hilbert spaces. The results presented in this article generalize and improve results of Tae-Hwa Kim and Hong-Kun Xu and others. The convergence rate of the iteration process presented in this article is faster than hybrid method of Tae-Hwa Kim and Hong-Kun Xu and others.

ITERATIVE SOLUTION OF NONLINEAR EQUATIONS WITH STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.605-615
    • /
    • 2000
  • Let E be a real Banach space with property (U,${\lambda}$,m+1,m);${\lambda}{\ge}$0; m${\in}N$, and let C be a nonempty closed convex and bounded subset of E. Suppose T: $C{\leftrightarro}C$ is a strongly accretive map, It is proved that each of the two well known fixed point iteration methods( the Mann and Ishikawa iteration methods.), under suitable conditions , converges strongly to a solution of the equation Tx=f.