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APPROXIMATING COMMON FIXED POINTS FOR TOTAL

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

GANG-EUN KIM

Abstract. In this paper, we first show the weak convergence of the modi-
fied Ishikawa iteration process with errors of two total asymptotically non-
expansive mappings, which generalizes the result due to Khan and Fukhar-
ud-din [1]. Next, we show the strong convergence of the modified Ishikawa
iteration process with errors of two total asymptotically nonexpansive map-
pings satisfying Condition (A′), which generalizes the result due to Fukhar-
ud-din and Khan [2].
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1. Introduction

Let C be a nonempty closed convex subset of a Banach space E and let T be
a mapping of C into itself. Then T is said to be asymptotically nonexpansive [3]
if there exists a sequence {kn}, kn ≥ 1, with lim

n→∞
kn = 1, such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ (1)

for all x, y ∈ C and n ≥ 1. In particular, if kn = 1 for all n ≥ 1, T is said to be
nonexpansive. T is said to be uniformly λ-Lipschitzian if there exists a constant
λ > 0, such that

‖Tnx− Tny‖ ≤ λ‖x− y‖
for all x, y ∈ C and n ≥ 1. T is said to be asymptotically nonexpansive in the
intermediate sense [4] provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0. (2)
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Note that if we define

κn := sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ∨ 0,

where a ∨ b := max{a, b}, then κn → 0 as n → ∞, and (2) reduces to

‖Tnx− Tny‖ ≤ ‖x− y‖+ κn (3)

for all x, y ∈ C and n ≥ 1. T is said to be total asymptotically nonexpansive (in
brief, TAN) [5] if there exist two nonnegative real sequences {cn} and {dn} with
cn, dn → 0, and φ ∈ Γ(R+) such that

‖Tnx− Tny‖ ≤ ‖x− y‖+ cnφ(‖x− y‖) + dn, (4)

for all x, y ∈ C and n ≥ 1, where R+ := [0,∞) and φ ∈ Γ(R+) if and only
if φ is strictly increasing, continuous on R+ and φ(0) = 0. It is not hard to
see that the property (4) with cn = 0 for all n ≥ 1 is equivalent to (3) with
dn = κn and if we take φ(t) = t for all t ≥ 0 and dn = 0 for all n ≥ 1
in (4), it is reduced to (1). It is not difficult to see that, if F (T ) 6= ∅, then
nonexpansive, asymptotically nonexpansive and asymptotically nonexpansive in
the intermediate sense mappings all are the special cases of total asymptotically
nonexpansive mapping. For two mappings S, T of C into itself, the following
iteration scheme was introduced by Das and Debata [6]: x1 ∈ C,

xn+1 = (1− αn)xn + αnS[(1− βn)xn + βnTxn] (5)

for all n ≥ 1, where {αn} and {βn} are real sequences in [0, 1]. If S = T , then
such an iteration scheme was introduced by Ishikawa [7]; see also Mann [8]. For
two mappings S, T of C into itself, we consider a more general iterative scheme
of the type (Kim et al.[9], cf., Xu [10]) emphasizing the randomness of errors as
follows:

x1 ∈ C,

xn+1 = αnxn + βnSyn + γnun, (6)

yn = α′
nxn + β′

nTxn + γ′
nvn,

where {αn}, {βn},{γn}, {α′
n}, {β′

n},{γ′
n} are real sequences in [0,1] and {un},

{vn} are two sequences in C such that

(i) αn + βn + γn = α′
n + β′

n + γ′
n = 1 for all n ≥ 1,

(ii)

∞∑
n=1

γn < ∞ and

∞∑
n=1

γ′
n < ∞.

If γn = γ′
n = 0 for all n ≥ 1, then (6) reduces to an iteration scheme (5).

We also consider a more general iterative process of the type (Kim et al. [11])
emphasizing the randomness of errors as follows:

x1 ∈ C,

xn+1 = αnxn + βnS
nyn + γnun, (7)

yn = α′
nxn + β′

nT
nxn + γ′

nvn,
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where {αn}, {βn},{γn}, {α′
n}, {β′

n}, {γ′
n} are real sequences in [0, 1] and {un},

{vn} are two sequences in C such that

(i) αn + βn + γn = α′
n + β′

n + γ′
n = 1 for all n ≥ 1,

(ii)

∞∑
n=1

γn < ∞ and

∞∑
n=1

γ′
n < ∞.

Recently, Khan and Fukhar-ud-din [1] proved the following result: Supposed
that E is a uniformly convex Banach space satisfying Opial’s condition and
C is a nonempty bounded closed convex subset of E and S, T : C → C are
nonexpansive mappings with a common fixed point. Suppose that the sequence
{xn} defined by (6) satisfies 0 < a ≤ βn, β

′
n ≤ b < 1 for all n ≥ 1 and some

a, b ∈ (0, 1). Then {xn} converges weakly to a common fixed point of S and
T . On the other hand, Fukhar-ud-din and Khan [2] proved the following result:
Supposed that E is a uniformly convex Banach space and C is a nonempty closed
convex subset of E and S, T : C → C are uniformly λ-Lipschitzian mappings
satisfying Condition (A′) with F = F (S) ∩ F (T ) 6= ∅ and

‖Snx− p‖ ≤ (1 + kn)‖x− p‖, ‖Tnx− p‖ ≤ (1 + kn)‖x− p‖

for all p ∈ F and n ≥ 1, where {kn} ⊂ [0,∞) such that

∞∑
n=1

kn < ∞. Suppose

that the sequence {xn} defined by (7) satisfies 0 < a ≤ βn, β
′
n ≤ b < 1 for

all n ≥ 1 and some a, b ∈ (0, 1) and {un}, {vn} are two bounded sequences in
C. Then {xn} converges strongly to a common fixed point of S and T . Thus
Theorem 3 of Qihou [12], Theorem 2 of Khan and Fukhar-ud-din [1], Theorem
2 of Senter and Dotson [13], Theorem 1 of Maiti and Ghosh [14], Theorem 2 of
Schu [15] and Theorem 2 of Khan and Takahashi [16] are all special cases of the
result due to Fukhar-ud-din and Khan [2].

In this paper, we first show that the iteration {xn} defined by (7) converges
weakly to a common fixed point of S and T when E is a uniformly convex Banach
space satisfying Opial’s condition and S, T : C → C are total asymptotically
nonexpansive mappings, which generalizes the result due to Khan and Fukhar-
ud-din [1]. Next, we show that the iteration {xn} defined by (7) converges
strongly to a common fixed point of S and T when E is a uniformly convex
Banach space and S, T : C → C are total asymptotically nonexpansive mappings
satisfying Condition (A′), which generalizes the result due to Fukhar-ud-din and
Khan [2].

2. Preliminaries

Throughout this paper we denote by E a real Banach space. Let C be a
nonempty closed convex subset of E. A mapping T : C → E is said to be
demiclosed at y ∈ E if for any sequence {xn} in C, it follows from xn ⇀ x
and Txn → y that x ∈ C and T (x) = y. I − T is demiclosed at zero if for any
sequence {xn} in C, the conditions xn ⇀ x and xn−Txn → 0 imply x−Tx = 0.
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Recall that a Banach space E is said to be uniformly convex if the modulus of
convexity δE = δE(ε), 0 < ε ≤ 2, of E defined by

δE(ε) = inf
{
1− ‖x+ y‖

2
: x, y ∈ E, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}

satisfies the inequality δE(ε) > 0 for every ε ∈ (0, 2]. If E is uniformly convex,
then for each r, ε with r ≥ ε > 0, we have δ( εr ) > 0 and

∥∥∥x+ y

2

∥∥∥ ≤ r
(
1− δ(

ε

r
)
)

for every x, y ∈ E with ‖x‖ ≤ r, ‖y‖ ≤ r, ‖x−y‖ ≥ ε. When {xn} is a sequence in
E, then xn → x (xn ⇀ x) will denote strong (weak) convergence of the sequence
{xn} to x. A Banach space E is said to satisfy Opial’s condition [17] if for any
sequence {xn} in E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y 6= x. All Hilbert spaces and lp(1 < p < ∞) satisfy Opial’s
condition, while Lp with 1 < p 6= 2 < ∞ do not. Two mappings S, T : C → C
with F = F (S)

⋂
F (T ) 6= ∅, where C is a subset of E, are said to satisfy condition

(A′)[2] if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0
and f(r) > 0 for all r ∈ (0,∞) such that either ‖x − Sx‖ ≥ f(d(x,F)) or
‖x− Tx‖ ≥ f(d(x,F)) for all x ∈ C, where d(x,F) = inf

z∈F
‖x− z‖.

3. Weak and strong convergence theorems

We first begin with the following:

Lemma 3.1 ([12]). Let {an}, {bn} and {cn} be sequences of nonnegative real

numbers such that

∞∑
n=1

bn < ∞,

∞∑
n=1

cn < ∞ and

an+1 ≤ (1 + bn)an + cn

for all n ≥ 1. Then lim
n→∞

an exists.

Lemma 3.2 ([18]). Let E be a uniformly convex Banach space. Let x, y ∈ E. If
‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x−y‖ ≥ ε > 0, then ‖λx+(1−λ)y‖ ≤ 1−2λ(1−λ)δ(ε)
for λ with 0 ≤ λ ≤ 1.

Lemma 3.3. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let S, T : C → C be two mappings with F (S) ∩ F (T ) 6= ∅
satisfying

‖Tnx− Tny‖ ≤ ‖x− y‖+ cnφ(‖x− y‖) + dn

and
‖Snx− Sny‖ ≤ ‖x− y‖+ cnφ(‖x− y‖) + dn

for all x, y ∈ C and n ≥ 1, where φ ∈ Γ(R+). Suppose that {cn}, {dn} and φ
satisfy the following two conditions:
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(I) ∃α, β > 0 such that φ(t) ≤ αt for all t ≥ β.

(II)

∞∑
n=1

cn < ∞,

∞∑
n=1

dn < ∞.

Suppose that the sequence {xn} is defined by (7) and {un}, {vn} are two bounded
sequences in C. Then lim

n→∞
‖xn − z‖ exists, for any z ∈ F (S) ∩ F (T ).

Proof. For any z ∈ F (S) ∩ F (T ), since {un} and {vn} are bounded, let

M0 := 1 ∨ φ(β) ∨ sup
n≥1

‖un − z‖ ∨ sup
n≥1

‖vn − z‖ < ∞.

By (I) and the strict increasing of φ, we obtain

φ(t) ≤ φ(β) + αt, t ≥ 0. (8)

By using (8), we obtain

‖yn − z‖
= ‖α′

nxn + β′
nT

nxn + γ′
nvn − z‖

≤ α′
n‖xn − z‖+ β′

n‖Tnxn − z‖+ γ′
n‖vn − z‖

≤ α′
n‖xn − z‖+ β′

n{‖xn − z‖+ cnφ(‖xn − z‖) + dn}+ γ′
nM

0

= (1− γ′
n)‖xn − z‖+ β′

ncnφ(‖xn − z‖) + β′
ndn + γ′

nM
0

≤ ‖xn − z‖+ cn[φ(β) + α‖xn − z‖] + dn + γ′
nM

0

≤ (1 + αcn)‖xn − z‖+ cnφ(β) + dn + γ′
nM

0

≤ (1 + αcn)‖xn − z‖+ λnM
0,

where λn = cn + dn + γ′
n and

∞∑
n=1

λn < ∞. Since

‖Snyn − z‖
≤ ‖yn − z‖+ cnφ(‖yn − z‖) + dn

≤ (1 + αcn)‖xn − z‖+ λnM
0 + cn[φ(β) + α‖yn − z‖] + dn

≤ (1 + αcn)‖xn − z‖+ αcn‖yn − z‖+ (λn + cn + dn)M
0

≤ (1 + αcn)‖xn − z‖+ αcn[(1 + αcn)‖xn − z‖+ λnM
0] +

(λn + cn + dn)M
0

= (1 + σn)‖xn − z‖+ νnM
0,

where σn = 2αcn+α2c2n, νn = αcnλn+λn+cn+dn,

∞∑
n=1

σn < ∞ and

∞∑
n=1

νn < ∞,

we obtain

‖xn+1 − z‖ = ‖αnxn + βnS
nyn + γnun − z‖

≤ αn‖xn − z‖+ βn‖Snyn − z‖+ γn‖un − z‖
≤ αn‖xn − z‖+ βn{(1 + σn)‖xn − z‖+ νnM

0}+ γnM
0

= (1− γn)‖xn − z‖+ βnσn‖xn − z‖+ βnνnM
0 + γnM

0
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≤ (1 + σn)‖xn − z‖+ (νn + γn)M
0.

By Lemma 3.1, we see that lim
n→∞

‖xn − z‖ exists. ¤

Theorem 3.4. Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E. Let S, T : C → C be uniformly contin-
uous and two mappings with F (S) ∩ F (T ) 6= ∅ satisfying

‖Tnx− Tny‖ ≤ ‖x− y‖+ cnφ(‖x− y‖) + dn

and
‖Snx− Sny‖ ≤ ‖x− y‖+ cnφ(‖x− y‖) + dn

for all x, y ∈ C and n ≥ 1, where φ ∈ Γ(R+). Let {cn}, {dn} and φ be as
taken in Lemma 3.3. Suppose that for any x1 in C, the sequence {xn} defined
by (7) satisfies 0 < a ≤ βn, β

′
n ≤ b < 1 for all n ≥ 1 and some a, b ∈ (0, 1)

and {un}, {vn} are two bounded sequences in C . Then lim
n→∞

‖xn − Txn‖ =

lim
n→∞

‖xn − Sxn‖ = 0.

Proof. Note that wn := max{γ′
n,

γn

a } → 0 as n → ∞ and
∑∞

n=1 wn < ∞. For
any z ∈ F (S)∩F (T ), as in the proof of Lemma 3.3, {xn} and {yn} are bounded.
Since {un} and {vn} are bounded in C, let

M := 1 ∨ φ(β) ∨W < ∞,

whereW := supn≥1 ‖un−z‖∨supn≥1 ‖xn−z‖∨supn≥1 φ(‖xn−z‖)∨supn≥1 φ(‖yn−
z‖)∨ supn≥1 ‖vn−z‖∨ supn≥1 ‖xn−un‖∨ supn≥1 ‖xn−vn‖. By Lemma 3.3, we
see that lim

n→∞
‖xn − z‖(≡ r) exists. Without loss of generality, we assume r > 0.

As in the proof of Lemma 3.3, we obtain

‖Snyn − z‖ ≤ (1 + σn)‖xn − z‖+ νnM

≤ ‖xn − z‖+ σnM + νnM

= ‖xn − z‖+ τnM,

where τn = σn + νn and

∞∑
n=1

τn < ∞. Thus

‖Snyn − z + γn(un − xn)‖ ≤ ‖Snyn − z‖+ γn‖un − xn‖
≤ ‖xn − z‖+ τnM + γnM

= ‖xn − z‖+ (τn + γn)M,

and hence

‖xn − z + γn(un − xn)‖ ≤ ‖xn − z‖+ γn‖un − xn‖
≤ ‖xn − z‖+ γnM

≤ ‖xn − z‖+ (τn + γn)M.

By using Lemma 3.2, we obtain

‖xn+1 − z‖
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= ‖αnxn + βnS
nyn + γnun − z‖

= ‖αn(xn − z) + βn(S
nyn − z) + γn(un − z)‖

= ‖βn(S
nyn − z) + αn(xn − z) + γn(un − xn + xn − z) +

βnγn(un − xn)− βnγn(un − xn)‖
= ‖βn(S

nyn − z) + (1− βn)(xn − z) + γn(un − xn) + βnγn(un − xn)−
βnγn(un − xn)‖

= ‖βn(S
nyn − z) + βnγn(un − xn) + (1− βn)(xn − z) +

(1− βn)γn(un − xn)‖
= ‖βn(S

nyn − z + γn(un − xn)) + (1− βn)(xn − z + γn(un − xn))‖
≤

(
‖xn − z‖+ εnM

)[
1− 2βn(1− βn)δE

( ‖Snyn − xn‖
‖xn − z‖+ εnM

)]
,

where εn = τn + γn and

∞∑
n=1

εn < ∞. Hence we obtain

2βn(1− βn)
(
‖xn − z‖+ εnM

)
δE

( ‖Snyn − xn‖
‖xn − z‖+ εnM

)

≤ ‖xn − z‖ − ‖xn+1 − z‖+ εnM.

Since

2a(1− b)

∞∑
n=1

(
‖xn − z‖+ εnM

)
δE

( ‖Snyn − xn‖
‖xn − z‖+ εnM

)
< ∞,

and δE is strictly increasing and continuous, we obtain

lim
n→∞

‖Snyn − xn‖ = 0. (9)

Since

‖xn+1 − z‖
= ‖αnxn + βnS

nyn + γnun − z‖
≤ αn‖xn − z‖+ βn‖Snyn − z‖+ γn‖un − z‖
≤ αn‖xn − z‖+ βn{‖yn − z‖+ cnφ(‖yn − z‖) + dn}+Mγn

= αn‖xn − z‖+ βn‖yn − z‖+ βncnφ(‖yn − z‖) + βndn +Mγn

= (1− βn − γn)‖xn − z‖+ βn‖yn − z‖+ βncnφ(‖yn − z‖+ βndn +Mγn

≤ (1− βn)‖xn − z‖+ βn‖yn − z‖+ βncnM + βndn +Mγn

and hence

‖xn+1 − z‖ − ‖xn − z‖
βn

≤ ‖yn − z‖ − ‖xn − z‖+ cnM + dn +M
γn
a

≤ ‖yn − z‖ − ‖xn − z‖+ cnM + dn +Mwn.
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So, we have

‖xn − z‖ − ‖yn − z‖ ≤ ‖xn − z‖ − ‖xn+1 − z‖
βn

+ cnM + dn +Mwn (10)

≤ ‖xn − z‖ − ‖xn+1 − z‖
a

+ (cn + dn + wn)M.

Since

‖Tnxn − z + γ′
n(vn − xn)‖ ≤ ‖xn − z‖+ cnφ(‖xn − z‖) + dn + γ′

nM

≤ ‖xn − z‖+ (cn + dn + wn)M

and

‖xn − z + γ′
n(vn − xn)‖ ≤ ‖xn − z‖+ (cn + dn + wn)M,

we obtain

‖yn − z‖ (11)

= ‖α′
nxn + β′

nT
nxn + γ′

nvn − z‖
= ‖α′

n(xn − z) + β′
n(T

nxn − z) + γ′
n(vn − z)‖

= ‖β′
n(T

nxn − z) + (1− β′
n)(xn − z) + γ′

n(vn − xn) + β′
nγ

′
n(vn − xn)

−β′
nγ

′
n(vn − xn)‖

=
∥∥∥β′

n(T
nxn − z + γ′

n(vn − xn)) + (1− β′
n)(xn − z + γ′

n(vn − xn))‖

≤ (‖xn − z‖+ ζnM)
[
1− 2β′

n(1− β′
n)δE

( ‖Tnxn − xn‖
‖xn − z‖+ ζnM

)]
,

where ζn = cn + dn + wn and

∞∑
n=1

ζn < ∞. By using (10) and (11), we obtain

2a(1− b)(‖xn − z‖+ ζnM)δE

( ‖Tnxn − xn)‖
‖xn − z‖+ ζnM

)

≤ 2β′
n(1− β′

n)(‖xn − z‖+ ζnM)δE

( ‖Tnxn − xn)‖
‖xn − z‖+ ζnM

)

≤ ‖xn − z‖ − ‖yn − z‖+ ζnM

≤ ‖xn − z‖ − ‖xn+1 − z‖
a

+ ζnM + ζnM

=
‖xn − z‖ − ‖xn+1 − z‖

a
+ 2ζnM.

Since

2a(1− b)

∞∑
n=1

(‖xn − z‖+ ζnM)δE

( ‖Tnxn − xn‖
‖xn − z‖+ ζnM

)
< ∞,

we obtain

lim
n→∞

‖Tnxn − xn‖ = 0 (12)
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similarly to the arguement above. Since

‖yn − xn‖ = ‖α′
nxn + β′

nT
nxn + γ′

nvn − xn‖
≤ β′

n‖Tnxn − xn‖+ γ′
n‖vn − xn‖

≤ b‖Tnxn − xn‖+ γ′
nM,

and by using (12), we obtain

lim
n→∞

‖yn − xn‖ = 0. (13)

Since

‖Snxn − xn‖
≤ ‖Snxn − Snyn‖+ ‖Snyn − xn‖
≤ ‖xn − yn‖+ cnφ(‖xn − yn‖) + dn + ‖Snyn − xn‖,

and by using (9) and (13), we obtain

lim
n→∞

‖Snxn − xn‖ = 0. (14)

Since

‖xn+1 − xn‖ = ‖αnxn + βnS
nyn + γnun − xn‖

≤ βn‖Snyn − xn‖+ γn‖un − xn‖
≤ b‖Snyn − xn‖+ γnM

and by (9), we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (15)

Since

‖xn − Txn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ ‖Tn+1xn+1 − Tn+1xn‖

+‖Tn+1xn − Txn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ ‖xn − xn+1‖+ cn+1 ·

φ(‖xn − xn+1‖) + dn+1 + ‖Tn+1xn − Txn‖
= 2‖xn − xn+1‖+ cn+1φ(‖xn − xn+1‖) + dn+1 +

‖xn+1 − Tn+1xn+1‖+ ‖Tn+1xn − Txn‖
and by the uniform continuity of T and (12) and (15), we have

lim
n→∞

‖xn − Txn‖ = 0.

We also have limn→∞ ‖xn − Sxn‖ = 0 similarly to the arguement above. ¤

Lemma 3.5 ([19]). Let E be a uniformly convex Banach space. Let C be a
nonempty closed convex subset of E and let T : C → C be a continuous total
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asymptotically nonexpansive mapping. Then I − T is demiclosed at zero in the
sense that whenever xn ⇀ x and

lim sup
m→∞

lim sup
n→∞

‖xn − Tmxn‖ = 0

it follows that x = Tx.

Our Theorem 3.6 carries over Theorem 1 of Khan and Fukhar-ud-din [1] to
total asymptotically nonexpansive mappings.

Theorem 3.6. Let E be a uniformly convex Banach space satisfying Opial’s
condition. Let C, S, T, {cn}, {dn} and φ be as taken in Theorem 3.4. Suppose that
for any x1 in C, the sequence {xn} defined by (7) satisfies 0 < a ≤ βn, β

′
n ≤ b < 1

for all n ≥ 1 and some a, b ∈ (0, 1) and {un}, {vn} are two bounded sequences in
C and F (S) ∩ F (T ) 6= ∅. Then {xn} converges weakly to a common fixed point
of S and T .

Proof. By Theorem 3.4, we obtain limn→∞ ‖xn − Txn‖ = 0 and so we have
limn→∞ ‖xn − Tmxn‖ = 0 for all m ∈ N by the uniform continuity of T . By
Lemma 3.3, there exists lim

n→∞
‖xn − z‖ for z ∈ F (S) ∩ F (T ) and thus {xn} is

bounded. Let z1 and z2 be two weak subsequential limits of the sequence {xn}.
We claim that the conditions xni ⇀ z1 and xnj ⇀ z2 imply z1 = z2. If not, by
Opial’s condition,

lim
n→∞

‖xn − z1‖ = lim
i→∞

‖xni − z1‖
< lim

i→∞
‖xni − z2‖

= lim
n→∞

‖xn − z2‖
and by using similar method, we have

lim
n→∞

‖xn − z2‖ < lim
n→∞

‖xn − z1‖.
This is a contradiction. Since xn ⇀ z1 and limn→∞ ‖xn − Tmxn‖ = 0 for
all m ∈ N and by Lemma 3.5, z1 ∈ F (T ). Similarly, z1 ∈ F (S). Hence
z1 = z2 ∈ F (S)∩F (T ) by the uniqueness of limits. The proof is completed. ¤

Our Theorem 3.7 carries over Theorem 2 of Fukhar-ud-din and Khan [2] to
total asymptotically nonexpansive mappings.

Theorem 3.7. Let E be a uniformly convex Banach space. Let C, S, T, {cn}, {dn}
and φ be as taken in Theorem 3.4. Let S, T : C → C be two mappings satisfying
Condition (A′) with F = F (S) ∩ F (T ) 6= ∅. Suppose that for any x1 in C, the
sequence {xn} defined by (7) satisfies 0 < a ≤ βn, β

′
n ≤ b < 1 for all n ≥ 1 and

some a, b ∈ (0, 1) and {un}, {vn} are two bounded sequences in C. Then {xn}
converges strongly to a common fixed point of S and T .

Proof. As in the proof of Lemma 3.3, we obtain

‖xn+1 − z‖ ≤ ‖xn − z‖+ hn. (16)
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where hn = (σn + νn + γn)M and

∞∑
n=1

hn < ∞. Thus

inf
z∈F

‖xn+1 − z‖ ≤ inf
z∈F

‖xn − z‖+ hn.

By using Lemma 3.1, we see that lim
n→∞

d(xn,F)(≡ k) exists. We first claim that

lim
n→∞

d(xn,F) = 0. In fact, assume that k = lim
n→∞

d(xn,F) > 0. Then we can

choose n0 ∈ N such that 0 < k
2 < d(xn,F) for all n ≥ n0. By using Condition

(A′) and Theorem 3.4, we obtain

0 < f(
k

2
) ≤ f(d(xn,F)) ≤ ‖xn − Sxn‖ → 0

or

0 < f(
k

2
) ≤ f(d(xn,F)) ≤ ‖xn − Txn‖ → 0

as n → ∞. This is a contradiction. So, we obtain k = 0. Next, we claim that
{xn} is a Cauchy sequence. Let ε > 0 be given. Since lim

n→∞
d(xn,F) = 0 and

∑∞
n=1 hn < ∞, there exists n0 ∈ N such that for all n ≥ n0, we obtain

d(xn,F) <
ε

4
and

∞∑

i=n0

hi <
ε

4
. (17)

Let n,m ≥ n0 and p ∈ F. Then, by using (16), we obtain

‖xn − xm‖ ≤ ‖xn − p‖+ ‖xm − p‖

≤ ‖xn0 − p‖+
n−1∑

i=n0

hi + ‖xn0 − p‖+
m−1∑

i=n0

hi

≤ 2[‖xn0 − p‖+
∞∑

i=n0

hi].

Taking the infimum over all p ∈ F on both sides and by using (17), we obtain

‖xn − xm‖ ≤ 2[d(xn0 ,F) +

∞∑

i=n0

hi]

< 2(
ε

4
+

ε

4
) = ε

for all n,m ≥ n0. This implies that {xn} is a Cauchy sequence. Let lim
n→∞

xn = q.

Then d(q,F) = 0. Since F is closed, we obtain q ∈ F. Hence {xn} converges
strongly to a common fixed point of S and T . ¤
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