• Title/Summary/Keyword: Isentropic Efficiency

Search Result 44, Processing Time 0.022 seconds

A Study on the Disk Type MHD Generator Using a Shock Tube (충격파관을 이용한 DISK형 MHD발전기에 관한 연구)

  • 배철오;신명철;김윤식;길경석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.447-453
    • /
    • 1999
  • In MHD power generation system, enthalpy of the working gas is convened to electric power directly through expansion in generator channel. It means that electric power can be generated without a moving mechanical linkage such as turbine blades. The principle of MHD generation is based on Faraday'law of induction that eletromotive force(u$\times$B) is generated when the working gas of velocity u flows a channel in which magnetic field of strength(B) exists. In this paper, helium gas seeded with cesium is used as working gas. There are two types of generator in MHD generation; linear type faraday and disk type hall generator. Rogowski coils having the bandwidth of the 100(Hz) ~ 20(kHz) were used for measuring current flowing MHD disk channel. Optimum load resistor value of the MHD generator studied was 2.5[$\Omega$]. Disk type hall generator's generation performance is the main target of this paper, which superiors to linear type Faraday generator in many points. Isentropic efficiency and enthalpy extraction rate of disk type shock tube driven hall generator is discussed here.

  • PDF

Performance Analysis of Vane Rotary Expander for $CO_2$ Cycles ($CO_2$ 사이클용 로타리 베인 팽창기 성능해석)

  • Kim, Ho-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Relatively low cycle performance of a conventional $CO_2$ system is partly due to significant increase in friction loss in the expansion process, since the pressure drop across the expansion device is considerably large compared to a conventional refrigeration cycle. To recover friction loss and increase refrigeration effect by providing isentropic expansion, a rotary vane type expander has been designed. Performance of the designed expander has been investigated by numerical simulation. With the pressure condition of 9 MPa/4.5 MPa and inlet temperature of $35^{\circ}C$, volumetric, isentropic, and mechanical efficiencies of the expander are calculated to be 58.1%, 101.1%, and 78.8%, respectively, resulting in total expander efficiency of 46.3%. With this expander, COP of a $CO_2$ refrigeration cycle is estimated to be improved by about 14%.

Experimental Investigation of 2kW Class Non-flammable Mixed Refrigerant Joule-Thomson Refrigerator with Cooling Temperature of -100 ℃ for Cryogenic Etching (초저온 식각을 위한 냉각용량 2kW 급 -100 ℃ 비가연성 혼합냉매 줄톰슨 냉각기의 실험적 고찰)

  • Jongmin Eun;Cheonkyu Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.6-11
    • /
    • 2024
  • This paper presents the design and experimental analysis of a cryogenic refrigeration system for -100 ℃, primarily intended for semiconductor etching process. The refrigeration system utilizes non-flammable mixed refrigerant Joule-Thomson refrigeration cycle, incorporating a precooling stage to enhance overall performance. The selected refrigerants for the system include R1234yf for the precooling stage, and Ar, R14, R23 and R218 for the main cooling stage of the Joule-Thomson refrigeration cycle. Design results according to the system constraints and experimental results are discussed, including lowest evaporation temperature, compressor isentropic efficiency and overall pressure tendencies. The achieved refrigerant fraction from optimal design is Ar: R14: R23: R218 = 0.15: 0.4: 0.15: 0.3, indicating COP of 0.1118 at the isentropic compressor efficiency of 50%. The experimental result shows the developed system reaches steady state in approximately 3 hours.

  • PDF

Waste heat recovery of recirculated MCFC using supercritical carbon dioxide power cycle (초임계 이산화탄소 사이클을 이용한 연료 재순환 MCFC의 폐열회수)

  • Lee, Jae Yoon;Ahn, Ji Ho;Kim, Tong Seop
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.42-45
    • /
    • 2019
  • The molten carbonate fuel cell has a high temperature of waste heat and can constitute a bottoming cycle to increase the efficiency. Previous study used a bottoming cycle as steam turbine cycle. In this study, we are going to replace the bottoming cycle with a supercritical carbon dioxide power cycle. The system power was compared to consider replacing the bottoming cycle. As a result, the power of the supercritical carbon dioxide power cycle at the present development stage is lower than that of the steam turbine cycle, but theoretically, the power can be larger than the steam turbine cycle. If the supercritical carbon dioxide power cycle improves the isentropic efficiency of the turbine by 89%, the isentropic efficiency of the compressor by 83%, and the effectiveness of the recuperator by 0.9, the power can be same to the steam turbine cycle.

Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor (물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

A Study on Performance comparison of two-size Tesla Turbines Application in Organic Rankine Cycle Machine

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.67-76
    • /
    • 2015
  • This paper aims to study and design of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding through Tesla turbine. The study on ORC machine expanding through Tesla turbine has result on the efficiency of Tesla turbine. In addition, Thermodynamics theory on isentropic efficiency proved to be a successful method for overcoming the difficulties associated with the determination of very low torque at very high angular speed. By using an inexpensive experiment device and a simple method, the angular acceleration method, for measuring output torque and power in a Tesla turbine is able to predict a tendency of output work. The experiments using two Tesla turbine sizes, the first size is 1.6 bigger than the second one. In comparison with the first size, the tesla turbine can produce power output more than 62% of the second size. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

Performance Analysis of an Air-Cycle Refrigeration System (공기사이클 냉동시스템의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.671-678
    • /
    • 2012
  • The objective of this study is to analyze theoretically the performance of an open air-cycle refrigeration system in which environmental concerns increase. The pressure ratio of the external compressor and efficiencies of the components that compose of the system are selected as important parameters. As the pressure ratio of the external compressor increases, the pressure ratio of the ACM compressor is determined high, the refrigerating temperature and capacity increase, the COP decreases, and the total entropy production rate increases. The effect of heat exchanger effectiveness and turbine efficiency on the performance are greater than that of the ACM compressor efficiency. Also the performance of the air-cycle refrigeration system with two heat exchangers has been enhanced like high COP and low total entropy production rate, compared to the system with one heat exchanger.

Shape Optimization of High Power Centrifugal Compressor Using Multi-Objective Optimal Method (다목적 최적화 기법을 이용한 고출력 원심압축기 형상 최적설계)

  • Kang, Hyun Su;Lee, Jeong Min;Kim, Youn Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.435-441
    • /
    • 2015
  • In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.

A Study of Ocean Thermal Energy Conversion Systems Using Kalina cycle and Regenerative Rankine cycle (Kalina 사이클과 재생 Rankine 사이클을 이용한 해양 온도차 발진 시스템)

  • Shin, S.H.;Jung, D.S.;Kim, C.B.;Seo, T.B.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.101-113
    • /
    • 1999
  • Thermodynamic performance of a simple Rankine cycle, regenerative Rankine cycle, and Kalina cycle for Ocean thermal Energy Conversion(OTEC) is evaluated under the same condition with various working fluids. The evaporator and condenser are modeled by a UA and LMTD method while the turbine and pump are modeled by considering isentropic efficiencies. As for the working fluids, R22, R134a, R32, propylene, ammonia are used for the Rankine cycles while ammonia/water and R32/R134a mixtures are used for Kalina cycle. Calculated results show that newly developed fluids such non-ozone depleting refrigerants as R134a and R32 perform as well as R22 and ammonia. The regenerative Rankine cycle showed a 1.2 to 2.8% increase in energy efficiency as compared to the simple Rankine cycle while the Kalina cycle with ammonia/water mixture showed a 1.8% increase in energy efficiency. The efficiency of the Kalina cycle with R32/R134a mixtures is the same as that of a simple Rankine cycle using R22. Therefore, the regenerative Rankine cycle turns out to be best choice for OTEC applications.

  • PDF

Simulation of a geothermal power generation system using the Kalina cycle (칼리나 사이클을 이용한 지열발전 시스템의 시뮬레이션)

  • Chang, Ki-Chang;Baik, Young-Jin;Kim, Min-Sung;Lee, Young-Soo;Park, Seong-Ryong;Ra, Ho-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.626-629
    • /
    • 2008
  • In this study, a geothermal power generation system using the Kalina cycle was investigated by the simulation method. The Kalina cycle system can be used for the utilization of a low-temperature heat sources such as geothermal and industrial waste heat that are not hot enough to produce steam. The sea/river water can be considered as a cooling media. A steady-state simulation model was developed to analyze and optimize its performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump were modelled by an isentropic efficiency, while a condenser, an evaporator and a regenerative heat exchanger were modeled by UA-LMTD method with a counter-flow assumption. The effect of the ammonia fraction at the separator inlet on the cycle performance is investigated in detail.

  • PDF