• 제목/요약/키워드: Ischemic brain damage

검색결과 168건 처리시간 0.025초

뇌경색 마우스의 뇌손상에 대한 소풍탕(疎風湯)의 보호효과 (The Protective Effects of Sopung-tang on Brain Damage in Photothrombotic Ischemia Mouse Model)

  • 장석오;최지혜;이동엽;최용준;이인;문병순
    • 대한한방내과학회지
    • /
    • 제30권3호
    • /
    • pp.612-623
    • /
    • 2009
  • Objectives : The water extract of Sopung-tang (SPT) has been traditionally used in the treatment of acute stroke in Oriental Medicine. Pro-inflammatory cytokines play a critical role in the onset of post-ischemic inflammatory cascades. The present study was designed to investigate the effects of SPT on pro-inflammatory cytokine production in a photothrombotic ischemia mouse model. Methods : After SPT oral administration to the mice for five days, with using Rose Bengal and cold light, photothrombotic ischemia lesion was induced in stereotactically held male BALB/c mice. Also, results including, gross finding lesion size, histopathological finding changes, and inflammatory cytokine expression changes from the photothrombotic ischemia mouse model were observed. Results : The photothrombotic ischemia lesion was decreased by the oral injection of SPT. Also, SPT inhibited the expression of TNF-$\alpha$, IL-$1{\beta}$, IL-6, the active form of caspase-3 protease, and transglutaminase-2 in the photothrombotic ischemia lesion. Conclusions : These results suggest that SPT protects the ischemic death of brain cells through suppression of the production of anti-inflammatory cytokines and catalytic activation of caspase-3 protease in the photothrombotic ischemia mouse model.

  • PDF

A Novel Thrombolytic and Anticoagulant Serine Protease from Polychaeta, Diopatra sugokai

  • Kim, Hye Jin;Shim, Kyou Hee;Yeon, Seung Ju;Shin, Hwa Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.275-283
    • /
    • 2018
  • Ischemic stroke can result from blockage of blood vessels, forming fibrin clots in the body and causing irreparable brain damage. Remedial thrombolytic agents or anticoagulants have been studied; however, because the FDA-approved tissue plasminogen activator has low efficacy and side effects, it is necessary to develop safer and more effective treatment candidates. This study aimed at assessing the fibrinolytic and anticoagulation features of a novel serine protease extracted and purified from Diopatra sugokai, a polychaeta that inhabits tidal flats. The purified serine protease was obtained through ammonium sulfate precipitation, affinity chromatography, and ion-exchange chromatography. Its molecular size was identified via SDS-PAGE. To characterize its enzymatic activities, the protease activity at various pH and temperatures, and in the presence of various inhibitors, was measured via azocasein assay. Its fibrinolytic activity and anticoagulant effect were assessed by fibrin zymography, fibrin plate assay, and fibrinogenolytic activity assays. The novel 38 kDa serine protease had strong indirect thrombolytic activity rather than direct activity over broad pH (4-10) and temperature ($37^{\circ}C-70^{\circ}C$) ranges. In addition, the novel serine protease exhibited anticoagulant activity by degrading the ${\alpha}$-, ${\beta}$-, and ${\gamma}$-chains of fibrinogen. In addition, it did not produce cytotoxicity in endothelial cells. Therefore, this newly isolated serine protease is worthy of further investigation as a novel alkaline serine protease for thrombolytic therapy against brain ischemia.

Kami-bang-pung-tong-sung-san is Involved in Protecting Neuronal Cells from Cytotoxic Insults

  • Na Young Cheul;Nam Gung Uk;Lee Yong Koo;Kim Dong Hee
    • 동의생리병리학회지
    • /
    • 제18권1호
    • /
    • pp.265-273
    • /
    • 2004
  • KBPTS is the fortified prescription of Bang-pung-tong-sung-san (BPTS) by adding Spatholobi Clulis and Salviae Miltiorrzae Radix. BPTS prescription has been used in Qriental medicine for the treatments of vascular diseases including hypertension, stroke, and arteriosclerosis, and nervous system diseases. Yet, the overall mechanism underlying its activity at the cellular levels remains unknown. To investigate the protective role of KBPTS on brain functions, noxious stimulations were applied to neurons in vitro and in vivo. KBPTS pretreatment in cultured cortical neurons of albino ICR mice rescued death caused by AMPA, NMDA, and kainate as well as by buthionine sulfoximine (BSO) and ferrous chloride (Fe/sup 2+/) treatments. Furthermore, KBPTS promoted animal's recovery from coma induced by a sublethal dose of KCN and improved survival by a lethal dose of KCN. To examine its physiological effects on the nervous system, we induced ischemia in the Sprague-Dawley rat's brain by middle cerebral artery (MCA) occlusion. Neurological examination showed that KBPTS reduced the time which is required for the animal after MCA occlusion to respond in terms of forelimb and hindlimb movement$. Histological examination revealed that KBPTS reduced ischemic area and edema rate and also protected neurons in the cerebral cortex and hippocampus from ischemic damage. Thus, the present data suggest that KBPTS may play an important role in protecting neuronal cells from external noxious stimulations.

허혈·재관류 유도 신경세포사멸에 대한 일당귀 물추출물의 신경보호효과 연구 (Neuroprotective effects of Angelicae Acutilobae Radix water extract against ischemia·reperfusion-induced apoptosis in SK-N-SH neuronal cells)

  • 오태우;박기호;이미영;최고야;박용기
    • 대한본초학회지
    • /
    • 제26권4호
    • /
    • pp.67-74
    • /
    • 2011
  • Objectives : The purpose of the study is to determine the neuroprotective effects of the water extract of Angelicae Acutilobae Radix(AA) on ischemia reperfusion-induced apoptosis in SK-N-SH human brain neuronal cells. Methods: SK-N-SH cells were treated with different concentrations of AA water extract (0.1, 0.2, 0.5 and 1.0 mg/ml) for 2 hr and then stimulated with Dulbecco's phosphate-buffered saline containing CI-DPBS: 3mM sodium azide and 10 mM 2-deoxy-D-glucose for 45 min, reperfused with growth medium, and incubated for 24 h. Cell viability was determined by WST-1 assay, and ATP/ADP levels were measured by ADP/ATP ratio assay kit. The levels of caspase-3 protein were determined by Western blot and apoptotic body was observed by Hoechst 33258 staining. Results : AA extract significantly inhibited decreasing the cell viability in ischemia-induced SK-N-SH cells. AA also increased the ratio of ADP/ATP in ischemia-induced neuronal cells and decreased the expression levels of apoptotic protein, caspase-3 and apoptotic DNA damage. Conclusions : Our results suggest that AA extract has a neuroprotective property via suppressing the apoptosis and increasing the energy levels in neuronal cells, suggesting that AA extract may has a therapeutic potential in the treatment of ischemic brain injury.

신우황청심원의 뇌허혈 및 중추신경계에 대한 약효 (Pharmacological Actions of New Woohwangchungsimwon Pill on Cerebral Ischemia and Central Nervous System)

  • 조태순;이선미;이은방;조성익;김용기;신대희;박대규
    • 약학회지
    • /
    • 제41권6호
    • /
    • pp.817-828
    • /
    • 1997
  • In order to investigate pharmacological properties of New Woohwangchungsimwon Pill (NWCH) and Woohwangchungsimwon Pill(WCH), effects of NWCH and WCH on cerebral ischemia and central nervous system were compared. Cerebral ischemia insult was performed using unilateral carotid artery occlusion in Mongolian gerbils. The histological observations showed preventive effect of NWCH and WCH treatments with ischemia-induced brain damage. The ATP in brain tissue was decreased in vehicle-treated ischemic gerbils. This decrease was prevented by NWCH and WCH treatment. In contrast to what was seen with ATP, the lactate and lipid peroxide were both elevated in vehicle-treated ischemic gerbils. This elevation was inhibited by NWCH and WCH treatments. In central nervous system, NWCH and WCH had sedative effect in rotarod and spontaneous activity test, but no effects on the hexobarbital-induced sleeping time. And, NWCH and WCH had weak anticonvulsion effects in electric shock- and pentetrazol-induced convulsion test. NWCH and WCH increased the respiration rate, but decreased the respiration depth in rats. Furthermore, NWCH and WCH showed antistress effect. Our findings suggest that the pharmacological profiles of NWCH on cerebral ischemia and central nervous system are similar to that of WCH.

  • PDF

전뇌 허혈성 흰쥐 모델에서 mBHT의 신경보호효과 연구 (Neuroprotective effect of modify Bo-Yang-Hwan-O-Tang on global ischemia in rat)

  • 오태우;박용기
    • 대한본초학회지
    • /
    • 제27권6호
    • /
    • pp.83-90
    • /
    • 2012
  • Objectives : Modified Bo-Yang-Hwan-O-Tang (mBHT) is a polyherbal medicine of twelve herbs traditionally used in the treatment of cerebral and cardiac stroke and vascular dementia. The purpose of this study was to evaluate the neuroprotective effect, pyramidal neuronal cell, inflammation and apoptosis of mBHT against global ischemia in rats. Methods : Global ischemia was produced by two-vessel occlusion(2-VO) in SD male rats. mBHT at dose of 500 mg/kg was orally administrated for 2 weeks or 6 weeks after global ischemia. The histopathological changes of ischemic brain were observed by staining of hematoxylin and eosin (H&E) and Nissl and immunohistochemisty with anti-GFAP (glial fibrillary acidic protein) antibody as a astrocyte marker. The expression of inducible nitric oxide synthase (iNOS) and apoptotic proteins such as Bax, Bcl-2 and caspase-3 was determined by western blot. Results : mBHT treatment significantly inhibited the pyramidal neuronal loss in CA1 of hippocampus of global ischemic rats by 2-VO. mBHT also suppressed the activation of astrocytes in the CA1 at 6 weeks after ischemia. In addition, mBHT significantly increased the expression of anti-apoptotic protein, Bcl-2 on iscemic brain, and significantly attenuated the expression of apoptotic proteins, Bax and caspase-3. Conclusions : These results indicate that mBHT inhibits neuronal cell damage induced in global ischemia by 2-VO, suggesting that mBHT may be a potential candidate for the treatment of vascular dementia.

청폐사간탕이 탕요유발 흰주의 뇌허혈손상에 미치는 영향 (Effect of Chungpaesagan-tang on Ischemic Damage Induced by Middle Cerebral Artery Occlusion in Diabetic Rats)

  • 정춘근;김은영;신정원;손영주;이현삼;정혁상;손낙원
    • 대한한의학회지
    • /
    • 제26권2호
    • /
    • pp.217-230
    • /
    • 2005
  • Objectives: Chungpaesagan-tang (CPSGT), which is frequently used for treating patients of cerebrovascular disease, has not been reported by clinical doctors concerning the effect of neuronal aptosis caused by brain ischemia. To study the effect of CPSGT on focal cerebral ischemia in normal and diabetic rats and SHR, focal cerebral ischemia was induced by transient MCAO, and after onset CPSGT was administrated. Methods: Rats (Sprague-Dawley) were divided into four groups: sham-operated group, MCA-occluded group, CPSGT­administrated group after MCA occlusion, and normal group. The MCA was occluded by intraluminal method. CPSGT was administrated orally twice (l and 4 hours) after middle cerebral artery occlusion. All groups were sacrificed at 24 hours after the surgery. The brain tissue Was stained with $2\%$ triphenyl tetrazolium chloride (TTC) or $1\%$ cresyl violet solution, to examine effect of CPSGT on ischemic brain tissue. The blood samples were obtained from the heart.~. Tumor necrosis $factor-\alpha$ level and interleukin-6 level of serum was measured from sera using enzyme-linked immunoabsorbent assay (ELISA). Then changes of immunohistochemical expression of $TNF-\alpha$ in ischemic damaged areas were observed. Results: In NC+MCAO+CP and DM+MCAO+CP, CPSGT significantly (p<0.01) decreased the number of neuron cells compared to the control group. CPSGT markedly reduced (p<0.01) the infarct size of the forebrain in distance from the interaural line on cerebral ischemia in diabetic rats. CPSGT significantly reduced the $TNF-\alpha$ expression in penumbra region of damaged hemisphere in diabetic rats. Conclusions: CPSGT had a protective effect on cerebral ischemia in SD rats, especially in diabetic rats compared with normal SD rats.

  • PDF

조구등이 MCAO 모델 흰쥐에서 gliosis 억제에 미치는 영향 (The Effect of the Water Extract of Uncariae Ramulus et Uncus on Gliosis in the Middle Cerebral Artery Occlusion(MCAO) Rats)

  • 김상우;김선애;송봉근
    • 대한한방내과학회지
    • /
    • 제31권4호
    • /
    • pp.763-774
    • /
    • 2010
  • Objectives : In condition of brain infarction, irreversible axon damage occurs in central nerve system(CNS), because gliosis becomes physical and mechanical barrier to axonal regeneration. Reactive gliosis induced by ischemic injury such as middle cerebral artery occlusion is involved with up-regulation of GFAP and CD81. The current study is to examine the effect of the Uncariae Ramulus et Uncus on CD81 and GFAP expression in the rat brain following middle cerebral artery occlusion. Methods : In order to study ischemic injuries on brain, infarction was induced by middle cerebral artery occlusion(MCAO) using insertion of a single nylon thread, through the internal carotid artery, into a middle cerebral artery. Cresyl violet staining, cerebral infarction size measurement, immunohistochemistry and microscopic examination were used to detect the expression of CD81 and GFAP and the effect on the infarct size and pyramidal cell death in the brain of the rat with cerebral infarction induced by MCAO. Results : The following results were obtained 1. Measuring the size of cerebral infartion induced by MCAO in the rat after injection of Uncariae Ramulus et Uncus showed the size was decreased. 2. Intravenous injection of Uncariae Ramulus et Uncus showed pyramidal cell death protection in the hippocampus in the MCAO rat. 3. Water extract injection of Uncariae Ramulus et Uncus decreased GFAP expression significantly in the MCAO rat. 4. Uncariae Ramulus et Uncus water extract decreased CD81 expression in the MCAO rat. 5. The administration of water extract of Uncariae Ramulus et Uncus induced up-regulation of c-Fos expression significantly compared with MCAO. 6. The admistration of water extract of Uncariae Ramulus et Uncus increased ERK expression significantly compared with MCAO. Conclusion : We observed that Uncariae Ramulus et Uncus could suppress the reactive gliosis, which disturbs the axonal regeneration in the brain of the rat with cerebral infaction after MCAO by controlling the expression of CD81 and GFAP. The effect may be modulated by the up-regulation of c-Fos and ERK. These results suggest that Uncariae Ramulus et Uncus can be a candidate to regenerate CNS injury.

대조환이 대뇌신경세포의 허혈성 손상에 미치는 영향 (Effects of Daejo-whan on the Ischemic Damage of Cerebral Neurons in Culture)

  • 박세홍;이광로;배선준;정상수;강세영;이상관;이성근;윤지원;성강경
    • 동의생리병리학회지
    • /
    • 제17권6호
    • /
    • pp.1500-1508
    • /
    • 2003
  • This study was performed to clarify the neurotoxic mechanism of nerve cells damage by brain ischemia. The cytotoxic effect of ischemia was determined by XTT assay, NR assay, superoxide dismutase(SOD) activity, amount of malondialdehyde(MDA), lactate dehydrogenase(LDH) activity, protein synthesis and tumor necrosis factor(TNF)-α activities after cerebral neurons derived from mouse were exposed to ischemia for 1∼30 minutes. In addition, the protective effect of extract of Daejo-whan(DJW) on ischemia-induced neurotoxicity was examined in these cultures. 1. Ischemia decreased cell number and viability by XTT assay or NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO₂ for 1∼20 minutes in these cultures. 2. Ischemia decreased SOD and protein syntheses, but it increased amount of MDA and, LDH and TNF-α activities in these cultures. 3. In the neuroprotective effect of DJW extracts on cerebral neurons damaged by ischemia, DJW extracts increased SOD activity and protein synthesis. While, it decreased amount of MDA and, LDH and TNF-α activities after cerebral neurons preincubated with herb extracts. It suggests that brain ischemia has neurotoxicity on cultured mouse cerebral neurons, and the herb extract such as DJW was very effective in blocking the neurotoxicity induced by ischemia in cultured mouse cerebral neurons.

단천환이 Hydrogen Peroxide에 의한 심근세포 독성에 미치는 영향 (Effects of Dancheonhwan on Hydrogen Peroxide-induced Apoptosis of H9c2 Cardiomyoblasts)

  • 나영훈;박상범;정승원;윤종민;이인;문병순
    • 동의생리병리학회지
    • /
    • 제18권3호
    • /
    • pp.774-782
    • /
    • 2004
  • The water extract of Dancheonhwan (DCH) has been used to treat ischemic brain and heart damage in oriental medicine. However, little is known about the mechanism by which the water extract of DCH rescues cells from ischemic damage. Therefore, this study was designed to investigate the protective mechanisms of DCH on the H₂O₂-induced toxicity in H9c2 cardiomyoblast cells. Treatment of H₂O₂ markedly decreased the viability of H9c2 cardiomyoblast in a dose-dependent and time-dependent manner. The nature of H₂O₂-induced toxicity of H9c2 cells resulted from apoptotic death confirmed with genomic DNA fragmentation. DCH increased the viability of H₂O₂-treated H9c2 cells by about 23%, and partially suppressed the genomic DNA fragmentation and PARP cleavage. H₂O₂ also activated caspase-3 protease and -9 protease, but not both caspase-6 protease and -8 protease. H₂O₂ induced the mitochondria dysfunction, including mitochondria membrane permeability transition (MPT) and cytosolic release of cytochrome c from mitochondria, which was prevented in part by pretreatment of DCH. N-acetylcystein (NAC), a free-radical scavenger, alone increased the viability of H₂O₂-treated H9c2 cells in a dose-dependent manner. Furthermore, the combination of NAC with DCH significantly increased the viability of the H₂O₂-treated H9c2 cells in a dose-dependent manner. These data indicate that DCH has the protective effect on ROS-induced apoptosis of cadiomyoblast H9c2 cells.