Kami-bang-pung-tong-sung-san is Involved in Protecting Neuronal Cells from Cytotoxic Insults

  • Na Young Cheul (Department of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Nam Gung Uk (Department of Neurophysiology, College of Oriental Medicine, Daejeon University) ;
  • Lee Yong Koo (Department of Western Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Kim Dong Hee (Department of Pathology, College of Oriental Medicine, Daejeon University)
  • Published : 2004.02.01

Abstract

KBPTS is the fortified prescription of Bang-pung-tong-sung-san (BPTS) by adding Spatholobi Clulis and Salviae Miltiorrzae Radix. BPTS prescription has been used in Qriental medicine for the treatments of vascular diseases including hypertension, stroke, and arteriosclerosis, and nervous system diseases. Yet, the overall mechanism underlying its activity at the cellular levels remains unknown. To investigate the protective role of KBPTS on brain functions, noxious stimulations were applied to neurons in vitro and in vivo. KBPTS pretreatment in cultured cortical neurons of albino ICR mice rescued death caused by AMPA, NMDA, and kainate as well as by buthionine sulfoximine (BSO) and ferrous chloride (Fe/sup 2+/) treatments. Furthermore, KBPTS promoted animal's recovery from coma induced by a sublethal dose of KCN and improved survival by a lethal dose of KCN. To examine its physiological effects on the nervous system, we induced ischemia in the Sprague-Dawley rat's brain by middle cerebral artery (MCA) occlusion. Neurological examination showed that KBPTS reduced the time which is required for the animal after MCA occlusion to respond in terms of forelimb and hindlimb movement$. Histological examination revealed that KBPTS reduced ischemic area and edema rate and also protected neurons in the cerebral cortex and hippocampus from ischemic damage. Thus, the present data suggest that KBPTS may play an important role in protecting neuronal cells from external noxious stimulations.

Keywords

References

  1. J Comp Neurol. v.342 no.4 Immunocytochemical localization of immunoglobulins in the rat brain: relationship to the blood-brain barrier Aihara N;Tanno H;Hall JJ;Pitts LH;Noble LJ https://doi.org/10.1002/cne.903420402
  2. Acta Neuropathol. v.94 no.2 Effect of transient focal ischemia on blood-brain barrier permeability in the rat: correlation to cell injury Albayrak S;Zhao Q;Siesjo BK;Smith ML https://doi.org/10.1007/s004010050688
  3. Neurosci Biobehav Rev v.16 Genetic hypertension and increased susceptibility to cerebral ischemia Barone FC;Price WJ;White RF;Willette RN;Feuerstein GZ https://doi.org/10.1016/S0149-7634(05)80182-4
  4. Stroke v.23 Reperfusion increases neutrophil and LTB4 receptor binding in focal ischemia Barone FC;Schmidt DB;Hillegass LM;Price WJ;White RF;Feuerstein GZ;Clark RK;Griswold DE;Sarau HM https://doi.org/10.1161/01.STR.23.9.1337
  5. Brain Res v.623 Neuron specific enolase increases in cerebral and systemic circulation following focal ischemia Barone FC;Clark RK;Price WJ;White RF;Storer BL;Feuerstein GZ;Ohlstein EH https://doi.org/10.1016/0006-8993(93)90012-C
  6. J Trauma. v.55 no.2 The synergistic effects of hypoxia/reoxygenation or tissue acidosis and bacteria on intestinal epithelial cell apoptosis Baylor AE 3rd;Diebel LN;Liberati DM;Dulchavsky SA;Brown WJ;Diglio CA. https://doi.org/10.1097/01.TA.0000079249.50967.C5
  7. Rev Neurosci. v.14 no.3 On the role of somatostatin in seizure control: clues from the hippocampus Binaschi A;Bregola G;Simonato M.
  8. Nature v.361 no.6407 A synaptic model of memory: long-term potentiation in the hippocampus Bliss TV;Collingridge GL. https://doi.org/10.1038/361031a0
  9. FASEB J. v.14 no.10 Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia Borlongan CV;Yamamoto M;Takei N;Kumazaki M;Ungsuparkorn C;Hida H;Sanberg PR;Nishino H. https://doi.org/10.1096/fj.14.10.1307
  10. J Cereb Blood Flow Metab v.8 Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral artery and ipsilateral common carotid arteries Brint S;Jacewicz M;Kiessling M;Tanable J;Pulsinelli W. https://doi.org/10.1038/jcbfm.1988.88
  11. Stroke v.23 A new model of temporary focal neocortical ischemia in the rat Buchan AM;Xue D;Slivka A. https://doi.org/10.1161/01.STR.23.2.273
  12. Neurosci Lett. v.347 no.2 Hypoxic preconditioning reduces apoptosis in a rat model of immature brain hypoxia-ischaemia Cantagrel S;Krier C;Ducrocq S;Bodard S;Payen V;Laugier J;Guilloteau D;Chalon S. https://doi.org/10.1016/S0304-3940(03)00525-1
  13. Brain Res Bull v.31 Progression of cerebral changes following middle cerebral artery occlusion in the rat: a quantitative planimetric, histologic, and immunohistochemical study Clark RK;Lee EV;Fish CJ;White RF;Price WJ;Jonak ZL;Feuerstein GZ;Barone FC. https://doi.org/10.1016/0361-9230(93)90124-T
  14. Graduate School thesis Effect of Bangpoongtongsungsan on the Hypertention induced by L-NAME injection and SHR in Rats) Lee, YH
  15. Science. v.287 no.5457 An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy During MJ;Symes CW;Lawlor PA;Lin J;Dunning J;Fitzsimons HL;Poulsen D;Leone P;Xu R;Dicker BL;Lipski J;Young D. https://doi.org/10.1126/science.287.5457.1453
  16. J Cereb Blood Flow Metab v.8 The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, age. Duverger D;MacKenzie T. https://doi.org/10.1038/jcbfm.1988.86
  17. J Neurochem. v.67 no.4 Lazaroid treatment prevents death of cultured rat embryonic mesencephalic neurons following glutathione depletion Grasbon-Frodl EM;Andersson A;Brundin P. https://doi.org/10.1046/j.1471-4159.1996.67041653.x
  18. J Cereb Blood Flow Metab. v.17 no.5 [3H]L-NG-nitroarginine binding after transient focal ischemia and NMDA-induced excitotoxicity in type I and type III nitric oxide synthase null mice Hara H;Ayata C;Huang PL;Waeber C;Ayata G;Fujii M;Moskowitz MA. https://doi.org/10.1097/00004647-199705000-00005
  19. J Neural Transm no.Sup. 65 General aspects of neurodegeneration Jellinger KA.
  20. Circulation. v.102 no.8 Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia Jeremias I;Kupatt C;Martin-Villalba A;Habazettl H;Schenkel J;Boekstegers P;Debatin KM. https://doi.org/10.1161/01.CIR.102.8.915
  21. J Neurochem. v.74 no.6 Dopamine-induced apoptosis is mediated by oxidative stress and Is enhanced by cyanide in differentiated PC12 cells Jones DC;Gunasekar PG;Borowitz JL;Isom GE. https://doi.org/10.1046/j.1471-4159.2000.0742296.x
  22. Curr Opin Neurobiol. v.13 no.1 Neurogenesis after ischaemic brain insults Kokaia Z;Lindvall O. https://doi.org/10.1016/S0959-4388(03)00017-5
  23. J Neural Transm. v.104 no.6-7 Excessive iron accumulation in the brain:a possible potential risk of neurodegeneration in Parkinson's disease Lan J;Jiang DH. https://doi.org/10.1007/BF01291883
  24. Proc Natl Acad Sci U S A. v.99 no.23 Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation Le DA;Wu Y;Huang Z;Matsushita K;Plesnila N;Augustinack JC;Hyman BT;Yuan J;Kuida K;Flavell RA;Moskowitz MA. https://doi.org/10.1073/pnas.232473399
  25. Nature. v.399 no.Sup.6738 The changing landscape of ischaemic brain injury mechanisms Lee JM;Zipfel GJ;Choi DW.
  26. Stroke. v.34 no.1 Reperfusion differentially induces caspase-3 activation in ischemic core and penumbra after stroke in immature brain Manabat C;Han BH;Wendland M;Derugin N;Fox CK;Choi J;Holtzman DM;Ferriero DM;Vexler ZS. https://doi.org/10.1161/01.STR.0000047101.87575.3C
  27. J Neural Transm no.Sup.43 Glutamate receptor antagonists in cerebral ischaemia McCulloch J.
  28. Prog Brain Res. v.135 Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives Meldrum BS. https://doi.org/10.1016/S0079-6123(02)35003-9
  29. Brain Res. v.657 no.1-2 N-methyl-D-aspartate receptor-mediated, prolonged afterdischarges of CA1 pyramidal cells following transient cerebral ischemia in the rat hippocampus in vivo Miyazaki S;Katayama Y;Furuichi M;Kano T;Yoshino A;Tsubokawa T. https://doi.org/10.1016/0006-8993(94)90985-7
  30. Mol Cells. v.15 no.2 Blockade of calcium entry accelerates arsenite-mediated apoptosis in rat cerebellar granule cells Namgung U;Kim DH;Lim SR;Xia Z.
  31. J Neurosci. v.18 no.10 Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia Namura S;Zhu J;Fink K;Endres M;Srinivasan A;Tomaselli KJ;Yuan J;Moskowitz MA. https://doi.org/10.1523/JNEUROSCI.18-10-03659.1998
  32. Nature. v.377 no.6545 Contrasting properties of two forms of long-term potentiation in the hippocampus Nicoll RA;Malenka RC. https://doi.org/10.1038/377115a0
  33. J Neural Transm no.Sup.58 Apoptosis as a general cell death pathway in neurodegenerative diseases Offen D;Elkon H;Melamed E.
  34. J Cereb Blood Flow Metab. v.15 no.6 Long-term spatial cognitive impairment after middle cerebral artery occlusion in rats: no involvement of the hippocampus Okada M;Nakanishi H;Tamura A;Urae A;Mine K;Yamamoto K;Fujiwara M. https://doi.org/10.1038/jcbfm.1995.127
  35. Trends in Neurosciences v.24 no.10 Ischemic injury and faulty gene transcripts in the brain Philip K. Liu;Robert G. Grossman;Chung Y. Hsu;Claudia S. Robertson https://doi.org/10.1016/S0166-2236(00)01918-4
  36. Neurobiol Dis. v.13 no.2 Ischemic neuronal death in the rat hippocampus: the calpain-calpastatin-caspase hypothesis Rami A. https://doi.org/10.1016/S0969-9961(03)00018-4
  37. Neuroscience. v.62 no.3 Glutamate-induced intracellular calcium changes and neurotoxicity in cortical neurons in vitro: effect of chemical ischemia Rajdev S;Reynolds IJ. https://doi.org/10.1016/0306-4522(94)90468-5
  38. J Neurosci. v.15 no.5 Pt 1 Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation Reynolds IJ;Hastings TG. https://doi.org/10.1523/JNEUROSCI.15-05-03318.1995
  39. Neurosurgery. v.42 no.1 Effect of N-methyl-D-aspartate and inhibition of neuronal nitric oxide on collateral cerebral blood flow after middle cerebral artery occlusion Robertson SC;Loftus CM. https://doi.org/10.1097/00006123-199801000-00023
  40. J Neurosci. v.19 no.20 Neuroprotective effect of high glucose against NMDA, free radical, and oxygen-glucose deprivation through enhanced mitochondrial potentials Seo SY;Kim EY;Kim H;Gwag BJ. https://doi.org/10.1523/JNEUROSCI.19-20-08849.1999
  41. Cell Mol Biol (Noisy-le-grand). v.46 no.4 Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases Shoham S;Youdim MB.
  42. J. Neurosci. v.19 Neuroprotective Effect of High Glucose Against NMDA, Free Radical, and Oxygen-Glucose Deprivation through Enhanced Mitochondrial Potentials So Y. Seo;Eun Y. Kim;Harriet Kim;Byoung J. Gwag https://doi.org/10.1523/JNEUROSCI.19-20-08849.1999
  43. J Cereb Blood Flow Metab. v.16 no.6 DNA fragmentation and HSP70 protein induction in hippocampus and cortex occurs in separate neurons following permanent middle cerebral artery occlusions States BA;Honkaniemi J;Weinstein PR;Sharp FR. https://doi.org/10.1097/00004647-199611000-00011
  44. Neurosci Res. v.47 no.1 Antioxidant N-acetylcysteine and AMPA/KA receptor antagonist DNQX inhibited mixed lineage kinase-3 activation following cerebral ischemia in rat hippocampus Tian H;Zhang Q;Li H;Zhang G. https://doi.org/10.1016/S0168-0102(03)00186-X
  45. Annu Rev Neurosci. v.22 Autoimmunity and neurological disease: antibody modulation of synaptic transmission Whitney KD;McNamara JO. https://doi.org/10.1146/annurev.neuro.22.1.175
  46. Exp Neurol. v.168 no.2 Ischemia-induced degeneration of CA1 pyramidal cells decreases seizure severity in a subgroup of epileptic gerbils and affects parvalbumin immunoreactivity of CA1 interneurons Winkler DT;Scotti AL;Nitsch C. https://doi.org/10.1006/exnr.2000.7605
  47. Neuron. v.28 no.2 Autoimmunity to munc-18 in Rasmussen's encephalitis Yang R;Puranam RS;Butler LS;Qian WH;He XP;Moyer MB;Blackburn K;Andrews PI;McNamara JO. https://doi.org/10.1016/S0896-6273(00)00118-5
  48. J Neurosci. v.17 no.24 Sublethal oxygen-glucose deprivation alters hippocampal neuronal AMPA receptor expression and vulnerability to kainate-induced death Ying HS;Weishaupt JH;Grabb M;Canzoniero LM;Sensi SL;Sheline CT;Monyer H;Choi DW. https://doi.org/10.1523/JNEUROSCI.17-24-09536.1997
  49. Dev Neurosci. v.20 no.4-5 Excitotoxicity and oxidative stress during inhibition of energy metabolism Zeevalk GD;Bernard LP;Sinha C;Ehrhart J;Nicklas WJ. https://doi.org/10.1159/000017342