• Title/Summary/Keyword: Ischemia stroke

Search Result 161, Processing Time 0.027 seconds

The Effect of NEES on the Occurrence of Caspase-3 in the Cerebellum of Rats with Transient Global Ischemia

  • Lee, Jung Sook;Song, Young Wha;Kim, Sung Won
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.5 no.2
    • /
    • pp.718-722
    • /
    • 2014
  • The cerebellum is known to control balance, equilibrium, and muscle tone. If the cerebellum becomes damaged, the body is unable to retain its balancing functions or involuntary muscle movement. This is why, in stroke patients, there is a high risk of functional disability, as well as a myriad of other disabilities secondary to stroke. Ischemia was induced in SD mice by occluding the common carotid artery for 5 minutes, after which blood was reperfused. Needle electrode electrical stimulation(NEES) was applied to acupuncture points, at 12, 24, and 48 hours post-ischemia on the joksamri. Protein expression was investigated through caspase-3 antibody immuno-reactive cells in the cerebral nerve cells and Western blotting. The results were as follows: The number of caspase-3 reactive cells in the corpus cerebellum 12 and 24 hours post-ischemia was significantly (p<.05) smaller in the NEES group compared to the GI group. caspase-3 expression 12 and 24 hours post-ischemia was significantly(p<.05) smaller in the NEES group compared to the GI group. Based on these results, NEES seems to have a significant effect on Caspase-3 in the cerebellum in an ischemic state at 12 and 24 hours post ischemia, NEES delays the occurrence of early stage apoptosis-inducing Caspase-3, delaying and inhibiting apoptosis. Further systematic studies will have to be conducted in relation to the application of this study's results on stroke patients.

The Experimental Study on the Animal Stroke Model of Oriental Medicine (한의학적 중풍 동물 모델 설정을 위한 실험적 연구)

  • 채한;이현삼;홍무창
    • The Journal of Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.82-92
    • /
    • 2000
  • The purpose of the present study was to explore the proper method for animal stroke model of Oriental medicine To this end, brain ischemia was induced by distal middle cerebral artery occlusion(dMCAO) and proximal middle cerebral artery occlusion(pMCAO) and evaluated with the method of Triphenyl Tetrazolium Chloride (TTC) staining and Swimming Behavior Test. Results demonstrated that first, infarct size and volume of pMCAO group were significantly bigger that those of dMCAO group. Second, analysis of swimming behavior test revealed that the percentage of left turning angles of pMCAO was significantly bigger than that of dMCAO. Third, during swimming behavior test, there were peculiar traces of small successive circles that represent motor dysfunction and conscious disturbance among dMCAO group. The results of the study thus indicate that non-invasive intraluminal method of pMCAO was the appropriate animal stroke model for Oriental medicine in the light of brain ischemia as hemiplesia and conscious disturbance.

  • PDF

Proteomic Analysis of MCAo Ischemia Model Administered with Yukmijihwangtang (MCAo 허혈동물모델에서 육미지황탕 효능에 관한 프로테오믹스 연구)

  • Kim, Young-Ok;Cho, Dong-Wuk;Kang, Bong-Joo
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.1 s.19
    • /
    • pp.153-160
    • /
    • 2007
  • In the post-genome era, analysis of the cellular transcriptome using microarray or the cellular proteome using a 2-D gel electrophoresis and MALDI-TOF mass spectrometry are most widely used. Stroke is one of the most important causes of death along with cancer and cardiac disease. When pathological change of cells in developed from cerebral ischemia accompanied by stroke administration of neuroprotective drugs before stroke can decreases the degeneration of neuronal cells. The purpose of the present study was to assess the neuroprotective effect and protein expression after administration of P004, middle cerebral artery model of cerebral ischemia in rats. SD rats were subjected to middle cerebral artery occlusion. P004 (1,000 mg/kg) was administered 2 times at 0, 90 minutes after middle cerebral artery occlusion (MCAo). Rats were killed at 48 hours, and infarct area and volume were determined by histology and computerized image analysis. We investigated the protein expression profile on the global ischemia induced by MCAo. This proteomic analysis enable us to identify several proteins differently expressed in infarct brain tissue. The aims of this study were to do investigation comparing the neuroprotection activities of P004 and to understand the mechanism of acted as neuroprotective drug.

  • PDF

Effect of Bambusae Caulis in Liquamen(Jukryuk) on Ischemic Damage to 4 Vessel Occlusion and Middle Cerebral Artery Occlusion in Mice (죽력(竹瀝)이 흰쥐의 중대뇌동맥(中大腦動脈) 및 전뇌허혈(全腦虛血) 폐쇄 허혈모델에 미치는 영향)

  • Kim, Jae-Hong;Hong, Jin-Woo;Na, Byung-Jo;Park, Seong-Uk;Jung, Woo-Sang;Moon, Sang-Kwan;Park, Jung-Mi;Ko, Cham-Nam;Cho, Ki-Ho;Kim, Young-Suk;Bae, Hyung-Sup
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.629-640
    • /
    • 2008
  • Objective : The purpose of this study was to investigate the neuroprotective effect of Jukryuk on 4-vessel occlusion(4-VO) and middle cerebral artery (MCA) ischemia. Method : After administration of Jukryuk, we compared the Jukryuk-treated group, the control, and the sham groups, in view of several points as follows 1) We evaluated the damage characterized by coagulative cell change of pyramidal neurons and pronounced gliosis in each group 2) We counted the number of normal pyramidal shapes after ischemia in each group 3) Immunohistochemistry (cyclooxygenase-2) 4) In focal ischemic injury model, we measured the volume of ischemic area Results : In this experiment, the effect of Jukryuk was determined to be protecting neuron cell shape, reducing the number of neuron cells damaged by ischemia and the volume of the ischemic area. In immunohistochemistry, Jukryuk reduced cyclooxygenase-2 expression Conclusions : According to this study, Jukryuk can protect neuron cells from injury by cerebrovascular ischemia.

  • PDF

Effect of Electroacupuncture of GB30 on the Expression of c-Fos following Transient Forebrain Ischemia in Rats (환도 (GB30) 전침자극이 일과성 전뇌 허혈로 유발된 c-Fos 단백질 발현에 미치는 영향)

  • 김재효;김풍식;김경식;김민선;박병립;손인철
    • The Journal of Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.108-118
    • /
    • 2002
  • Objective : Acupuncture and herbal medicine have been used to prevent and treat cerebrovascular accident, such as stroke, and many studies of acupuncture and moxibustion concerning stroke have been undertaken in humans and various animals. However, the protective effect of the electroacupuncture (EA) of Huan-do (GB30) on the transient forebrain ischemia injury has not been published. Methods : The nenroprotective effects of EA (2 ms, 10 Hz, and 1 - 2 mA) of GB30 on the transient forebrain ischemia injury were investigated by immunohistochemistry of c-Fos-like protein in Sprague-Dawley rats. Results : The transient forebrain ischemia injury resulted in increased expression of c-Fos-like protein (cFL) in the dentate gyms (DG) and CAl for 6 hrs after ischemia, and EA increased significantly expression of cFL in the CAl and DG. For 48 hrs after, there was delayed expression of cFL at the CAl and DG, representing the sign of neuronal cell death, but EA decreased the delayed expression of cFL, significantly. Conclusion : These results suggest that the nenroprotective effects of EA on transient forebrain ischemia injury may be related to excitatory regulation of cFL at the early stage and inhibitory regulation in the long term.

  • PDF

Large Scale Gene Expression Analysis in Rat Models of 4-Vessel Occlusion Ischemia (4-Vessel Occlusion 허혈동물모델에서의 대규모 유전자 발현 연구)

  • Kang, Bong-Joo;Hong, Seong-Gil;Kim, Yun-Taik;Kim, Young-Ok;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.6 no.1
    • /
    • pp.89-98
    • /
    • 2000
  • Cerebral ischemia, the most prevalent form of clinical stroke, is a medical problem of the first magnitude. Substantial efforts are being made to develop drugs which will protect the brain from the neurodegeneration followed by an ischemic stroke. A key factor in this process is the development of animal models that mimic the neuropathological consequences of stroke. Recently, there is increasing an evidence that free radical is involved in the mechanisms of ischemic brain damage. We investigated the macro scale gene expression analysis on the global ischemia induced by 4-vessel occlusion in Wister rats. The recent availability of microarrays provides an attractive strategy for elaborating an unbiased molecular profile of large number of genes during ischemic injury. This experimental approach offers the potential to identify molecules or cellular pathways not previously associated with ischemia. Ischemia was induced by 4-vessel occlusion for 10 minutes and reperfused again. RNA from sham control brain and time-dependent ischemed brain were hybridized to microarrays containing 4,000 rat genes. 589 genes were found to be at least 2 fold regulated at one or more time points. These survey data provide the foundation studies that should provide convincing proof for ischemia and oxidative stress on gene expression.

  • PDF

The Effect of Scutellariae Radix on Ischemia Induced Brain Injury in Rats

  • Park, Ji-Eun;Kim, Young-Kyun
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.10 no.1
    • /
    • pp.8-19
    • /
    • 2009
  • Scutellaria Radix, originated from Scutellaria baicalensis Georgi, is one of the most important medicine in traditional Oriental medicine, and possesses anti-bacterial activity and sedative effects, can be applied in the treatment of a range of conditions including diarrhea and hepatitis. It is reported that chronic global ischemia induces neuronal damage in selective, vulnerable regions of the brain, especially the hippocampus and cerebral cortex. In the present study, to investigate the effect of Scutellaria Radix extract on cerebral disease, the changes of regional cerebral blood flow and pial arterial diameter on ischemia/reperfusion state was determinated by Laser-Doppler Flowmetry and some parameters concerned with oxidative stress also measured. When SRe were administered for five days with the concentration of 100 mg/kg, GSH activity significantly increased. But SRe administeration showed no significant change in lipid peroxidation. When the activities of CAT, Cu, Zn-SOD and GSH were measured, CAT and GSH were activated by SRe administration. When 1 and 3 ㎍/㎖ SRe was applied to the neuronal cell cultures, the quantities of LDH was significantly reduced when compared with cultures treated only with NMDA. Through this study, it can be concluded that the ischemia/reperfusion induced brain stress may have contributed to cerebral damage in rats, and the present study provides clear evidence for the beneficial effect of SRe on ischemia induced brain injury.

  • PDF

Effects of Isometric Contraction Training by Electrostimulation on Type I and II Hindlimb Muscles in Cerebral Ischemia Model Rats (전기자극을 이용한 등척성 수축훈련이 뇌허혈 유발 쥐의 환측 Type I, II 근육에 미치는 영향)

  • Lee, Yoon-Kyong;Choe, Myoung-Ae;An, Gyeong-Ju
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.7
    • /
    • pp.1232-1241
    • /
    • 2006
  • Purpose: The purpose of this study was to examine the effects of cerebral ischemia on Type I(soleus) and Type II(plantaris, gastrocnemius) muscles, and to determine the effects of isometric contraction training by electro- stimulation on Type I and II muscles in cerebral ischemia model rats. Method: Twenty-five male Sprague-Dawley rats were randomly divided into four groups: ST(stroke), STES(stroke+electrostimulation), SH(sham) and SHES (sham+electrostimulation). The ST and STES groups received a transient right middle cerebral artery occlusion operation. The SH and SHES groups received a sham operation. The STES and SHES groups had daily isometric contraction training by electrostimulation(100Hz, 45mA, 7.5V) on hindlimb muscles for 7days. Result: Plantaris and gastrocenmius muscle weight, myofibrillar protein contents of soleus and gastrocnemius, and the muscle fiber cross-sectional area of gastrocnemius in the ST group significantly decreased compared with the SH group. Soleus, plantaris, gastrocnemius muscle weight, myofibrillar protein contents of soleus and gastrocnemius, and the Type I muscle fiber cross-sectional area of soleus and the Type II muscle fiber cross-sectional area of gastrocnemius in the STES group significantly increased compared with the 57 group. Conclusion: Hindlimb muscle atrophy occurs after acute stroke and isometric contraction training by electrostimulation during early stages of a stroke attenuates muscle atrophy of Type I and Type II muscles.

Effects of Electroacupuncture of GB30 on Transient Forebrain Ischemia Injury in Rats (일과성(一過性) 전뇌(前腦) 허혈(虛血) 손상(損傷)에 대한 환도(環跳) (GB30) 전침자극(電鍼刺戟)의 효과(效果))

  • Kim Poong-Sik;Kim Jae-Hyo;Choi Dong-Ok;Kim Kyung-Sik;Sohn In-Cheul
    • Korean Journal of Acupuncture
    • /
    • v.19 no.1
    • /
    • pp.35-45
    • /
    • 2002
  • Acupuncture and herbal medicine have been used to prevent and treat the cerebrovascular accident, such as a stroke, and many studies of acupuncture and moxibustion concerning to the stroke have been undertaken in the human and various animals. However, it was not published the protective effect of the electroacupuncture (EA) of Huan-do (GB30) on the transient forebrain ischemia injury. The neuroprotective effects of EA (2 ms, 10 Hz, and 1 - 2 mA) of GB30 on the transient forebrain ischemia injury was investigated by western blot of nNOS and hematoxylin and eosin stain in Sprague-Dawley rats. The transient forebrain ischemia injury resulted in increased expression of nNOS in the brain for 6 hrs after ischemia, and EA decreased significantly expression of nNOS protein in brain increased by transient forebrain ischemia injury. The survived neuronal cell stained with hematoxylin and eosin (H&E) decreased in the hippocampus by the 7 days after ischemia comparing with the normal. Comparing with the normal, the survived neurons seriously decreased cell in the hippocampus after the injury. However, the proportion of survived neurons was increased in EA treatment. These results suggest that EA of GB30 have neuroprotective effects on transient forebrain ischemia injury.

  • PDF

Effect of NEES on the Occurrence of c-Fos in the Cerebrum of a Rat With Transient Global Ischemia (일과성 전뇌허혈 유발 쥐의 침전극 저주파자극 후 대뇌의 c-Fos 발현에 미치는 영향)

  • Lee, Jung-Sook;Kim, Sung-Won
    • Physical Therapy Korea
    • /
    • v.17 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • Ischemia that causes stroke induces inflammation of brain cells and apoptosis and as a result, it influences much on the functional part of a man. The needle electrode electrical stimulation (NEES) that combines acupuncture of oriental medicine with electric therapy of western medicine relieves inflammation of cells and has effect on regrowth of nerve tissues. This study was conducted to verify the influence of NEES on the occurrence of c-Fos of cerebrum after applying NEES to the meridian point, Zusanli (ST 36) of a rats with induced ischemia. Global ischemia was induced by using ligation method on common carotid artery of male Sprague Dawley (SD) rats. The ligation was maintained for 5 minutes and then suture was removed for blood reperfusion. After inducing global ischemia, NEES was done to the left and right meridian points of Joksamri of a rat for 30 minutes after 12 hours, 24 hours, and 48 hours. The findings were as follows. 1. In the result of immunohistochemical method, the number of c-Fos immune response cells significantly decreased (P<.05) in NEES group than the control group (GI) that did not get NEES. 2. In the result of western blotting, the occurrence of c-Fos after 24 hours from the inducement of ischemia significantly decreased (P<.05) in NEES group than the control group (GI) that did not get NEES. Therefore, as the effect of NEES was shown highest after 24 hours from the ischemia, it is suspected that NEES would take important role in early treatment after cerebral stroke.