• 제목/요약/키워드: Irrigation water need

검색결과 67건 처리시간 0.029초

순물소모량 개념에 의한 제주도 농업용수 수요량 산정 (Estimation of irrigation water need using net water consumption concept in Jeju Island)

  • 김철겸;김남원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.297-297
    • /
    • 2016
  • 유역 수자원 관리의 관점에서, 경작지에서 필요한 수량은 경작지에서의 작물생산을 극대화하기 위해 공급해야 할 수량으로 볼 수 있으며, 이는 작물 경작상태의 최대증발산량에서 경작이전상태의 실제증발산량을 감한 수량으로 추정할 수 있다. 즉, 작물 경작으로 인하여 증가된 물소모량을 순물소모량이라 정의하며, 우리나라에서는 1977년 낙동강유역 하구조사 기술보고서에서 처음 도입된 이후, 제3차 수자원장기종합계획(1991-2011), 21세기를 바라보는 수자원전망(1993), 수자원개발 가능 지점 및 광역배분계획 기본조사(1996) 등에서 유역규모의 수자원 부존량 해석, 수자원관리계획 수립을 위해서 유역 물수지 방법에 의한 순물소모량 개념의 접근방법이 적용되어 왔다. 본 연구에서는 제주도 지역에 순물소모량 개념을 적용하여 4개 시험유역(한천, 천미천, 강정천, 외도천) 및 제주도 전역에 대한 지역별 수요량을 산정하였다. 또한, 향후 예상되는 작물재배면적 변화에 따른 순물소모량의 변화를 검토하고, 기존 제주특별자치도 수자원관리종합계획(2013-2022)에서 제시하고 있는 필요수량 개념의 수요량과 비교하였다.

  • PDF

논에서 SRI (System of Rice Intensification) 물 관리 방법을 적용한 온실가스 저감 효과 (Mitigation of Greenhouse Gases by Water Management of SRI (System of Rice Intensification) in Rice Paddy Fields)

  • 김건엽;이슬비;이종식;최은정;유종희
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1173-1178
    • /
    • 2012
  • 논에서 온실가스 배출에 영향을 주는 가장 큰 요인인 물관리를 통하여 온실가스 감축효과를 파악하고자, 춘천시 신북읍 천전리에 위치한 강원대학교 벼 시험포장에서 메탄과 아산화질소 배출 시험을 수행하였다. 벼 재배에서 상시담수, 간단관개 (중간낙수 1회 처리, 6월 11일~6월 20일) 그리고 SRI 물 관리 농법 처리 등을 조성하여 수량, 쌀의 품질, 온실가스 배출량 비교 및 온실가스 감축효과를 조사한 결과는 다음과 같다. 1. 물 관리별 벼 수량은 SRI 처리에서 $6,341kg\;ha^{-1}$로 가장 수량이 높았으며, 상시담수 (CF)에 비해 간단관개(ID)와 SRI 처리에서 각각 13.8%와 11.3% 증수되었다. 2. 재배기간 중 시기별 용수 사용량은 상시담수 처리가 $46.6m^3$, 간단관개 $39.5m^3$, SRI 물 관리 $24.5m^3$로 나타나, 상시담수 대비 각각 15.2% (간단관개), 47.4% (SRI)의 농업용수를 절감한 것으로 나타났다. 3. 벼 재배기간 온실가스 총 배출량을 지구온난화잠재력(GWP)으로 환산한 결과, 상시담수에 비해 간단관개가 65.5%, 그리고 SRI 물 관리 농법은 71.8%의 온실가스 감축효과가 있는 것으로 나타났다.

지하수 관개 시비의 지하수 내 질산성질소 저감 효과 평가 (Evaluation of the Effect of Pump and Fertilize on Nitrate Reduction in Groundwater)

  • 염여훈;김영;김문수;박선화;한경진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권1호
    • /
    • pp.18-27
    • /
    • 2024
  • In this study, the pump and fertilize (PAF) was applied to reduce nitrogen infiltration into groundwater at three corn cultivation sites over a three-year period, and its effectiveness was evaluated. PAF involves pumping nitrate-contaminated groundwater and using it for irrigation, thereby replacing the need for chemical fertilizers. This method not only substitutes chemical fertilization, but also reduces nitrogen infiltration into groundwater through root zone consumption. To confirm PAF's effectiveness, an equal amount of nitrogen was applied in each cultivation plot, either through chemical fertilizer or irrigation with nitrate-contaminated groundwater. Regular monitoring of infiltrating pore water and groundwater was conducted in each cultivation plot. The linear regression slope for nitrate concentration in the pore water after repeated application of PAF ranged from -3.527 to -8.3485 mg-N/L/yr, confirming that PAF can reduce nitrate concentration in the pore water. With an increasing proportion of PAF, the infiltrating nitrate mass in pore water was reduced by 42% compared to plots fertilized with chemical fertilizer. Additionally, the linear regression slope of nitrate concentration in groundwater was calculated as -2.2999 and -9.2456 mg-N/L/yr. Therefore, continuous application of PAF in rural areas is expected to significantly contribute to reducing nitrate concentration in groundwater.

Transitions between Uncontrolled Submerged and Uncontrolled Free in Low-Head Ogee Spillway

  • Hong, Seung Ho;Hong, Da Hee;Song, Yang Heon;Lee, Jeong Myeong;Jegal, Jin A
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.155-155
    • /
    • 2022
  • Low head, ogee spillways is popularly used to defense against floods as well as to provide water for irrigation. Spillway is also used to assess compliance with water quality regulations by controlling amount of discharge to the downstream of a channel. For the purpose of water resource management and/or environmental aspects as explained above, the flow discharge through spillways need to be correctly rated as a function of geometry and hydraulic variables. Typically, four flow conditions are encountered during the operation of spillway: (a) uncontrolled free flow (UF); (b) uncontrolled submerged flow (US); controlled free flow (CF); and controlled submerged flow (CS), and each condition has a unique rating equation. However, one of the tricky part of the spillway operation is finding correct flow type over the spillway because structures can operate under both submerged and free flow conditions, and the types are continuously changing over time depending on the amount of discharge, head water and tail water elevation. Quite obviously, if the wrong rating curve relationship is applied because of misjudgment of the flow type due to a transition, a serious error can occur. Thus, an hydraulic model study of one of spillway structure located in South Florida was conducted for the purpose of developing transition relationships. In this presentation, US to UF transition is highlighted.

  • PDF

농업가뭄 분석을 위한 농업가뭄평가.정보제공시스템 개발 (Development of Evaluation System for Agricultural Drought Management)

  • 박기욱;김진택;정병호
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.7-13
    • /
    • 2005
  • There are two ways to mitigate the drought. One is the structural measures such as storage of irrigation water, development of emergency wells, etc. The other one is the nonstructural measures such as water saving management by the early warning system. To precast and evaluate the drought, we need to develop the drought indices for agriculture. In the present drought preparedness plans of Ministry of Agriculture and Forestry (MAF), it is prescribed that the preparedness levels should be classified by considering the precipitation, reservoir storage, soil moisture in paddy and upland, and the growing status of crops. However there are not clear quantitative criteria for consistent judgment. This shows that we have not selected and utilized the proper drought index for agriculture and we did not have the information system to calculate the drought indices periodically and warn the outbreak of the drought. The objectives of the study are to develope of Agricultural Drought Evaluation System and to evaluate this indices for current agricultural status using the system.

  • PDF

항구적 한해대책을 위한 전천후농업용수시설의 농업수문학적 배경조사 연구 (I) (경북지방 중심) (Studies on the Agri-Hydrological Backgrounds of the All-Weather-Farming Water Resources Facilities to Prevent the Drought-Disasters Permanently (I))

  • 이기명;김조웅;서승덕;권무남
    • 한국농공학회지
    • /
    • 제22권4호
    • /
    • pp.73-81
    • /
    • 1980
  • In the light of these analysis of the recorded rainfall data from the meteorological observatories in Kyungpook area, hydraulic and hydrological data based on the representative watershed area and questionnaire or visiting letters to the 21 Land Reclamation Association in Kyungpook province, the hydrological backgrounds being the question to the irrigation facilities in Kyungpook Province or nation wide were studied partialy and the system of conservation and management of agricultural water sources facilities, prevention countermeasures to the drought and flood disasters, prediction of available surface waterflow and need or needless of new facilities establishment were reviewed in this paper. In the results, Technical and financial management and conservation investments of the already constructed ficalities should urgently and firstly be considered than the newly being established one.

  • PDF

유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토 (Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea)

  • 박윤식;류지철;김종건;금동혁;임경재
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.592-610
    • /
    • 2020
  • In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.232-232
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of 6.29 Gm3 per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.408-408
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of $6.29Gm^3$ per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

우리나라 농업용수 수질오염 현황과 개선대책 (A Status of Agricultural Water Quality and Improvable Countermeasure in Korea)

  • 백청오;강상구;이광식
    • 한국환경농학회지
    • /
    • 제15권4호
    • /
    • pp.506-519
    • /
    • 1996
  • The water quality in the rural areas is degrading due to a variety of causes such as the increase of the urban sewage and industrial wastes, the disposal of solid wastes, the growth of livestock waste, the growth of leisure facilities, the establishment of agricultural industry estates and etc. The water pollutants are scarce while the effluent is increasing from wide scattered sources. The technology specifically designed for the rural wastes water treatment plant needs to be implemented with improvement of agricultural water quality. 1. An integrated management measures against water pollution sources. The prevention of water pollution is the best measures in the environmental pollution. Hence, the most effective measures needs to be against the sources. Small-scale water treatment plants needs to be constructed in each village in the rural areas. As for the industrial effluent, the effluent discharge needs to be strictly monitored. Government subsidy for the establishment of treatment plant for livestock wastes is necessary. 2. The establishment of national-wide network for agricultural water quality. The network for agricultural water quality have been operated to conserve the agricultural water quality, and to develop management policies by the assessment of water pollution in the rural areas. The results of agricultural water quality network indicates that the water quality is degrading not only around urban areas but also in the distant rural areas, and the water quality at the pumping stations and weirs is worse than that of reservoirs. 3. The legal, systematic, and technical approaches for the agricultural water quality management. The actions currently implemented for the improvement of agricultural water quality involve temporary measures such as the improvement of irrigation facilities. These contingency measures are not effective in the long-term, and sometimes bring secondary pollution. Therefore, integrated measures covering the whole water environment such as the flow, quality, river morphology, aquatic ecosystem, and the surrounding environment, need be invented and implemented. Besides, the legal, systematic, and technical frameworks for the management are not fully established so far. The technology for the treatment of rural water pollution should be refined afterwards, and the research for the development of rural waste water treatment plant should be carried out.

  • PDF