• Title/Summary/Keyword: Irrigation water demand

Search Result 141, Processing Time 0.028 seconds

영농방식변화에 따른 논용수량 산정 시스템 개발

  • Ju, Uk-Jong;Kim, Jin-Taek;Park, Gi-Uk;Lee, Yong-Jik
    • KCID journal
    • /
    • v.13 no.1
    • /
    • pp.82-90
    • /
    • 2006
  • The practical date of rice growing stages and the date for calculating the water demand in paddy field have differences. The causes are rice planting water requirement, nursery bed area and change of average temperature and so on. Some recent papers have shown the same results. So we have investigated the nursery period, rice transplanting period and mid-summer drainage and developed a system for estimating water demand. And we calculated the water demand by using the system. The result showed that calculation by using the new system is more appropriate than the calculation by using the established period. But because water losses in canals and crop coefficient are not determined appropriately, we can calculate the agricultural water demand more accurately by dstablishing canal losses ratio, crop coefficient and so on.

  • PDF

Development of a Long-slope Water Harvesting System in Natural Channel for Drought Mitigation in Upland (밭작물 가뭄피해 경감을 위한 소류천 유출수 저수 시스템 개발)

  • Kim, Youngjin;Choi, Yonghun;Lee, Sangbong;Kim, Minyoung;Jeon, Jonggil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.111-118
    • /
    • 2020
  • This study developed a rainwater harvesting system for the irrigation of upland on sloping area. The assessment of water supply capacity was evaluated in farm field experience. This system consists of a water catchment device and a collapsible storage tank. The water catchment device was designed to collect runoff water in natural channel of 500 mm width into a pipe of 50 mm inner diameter. The device has funnel-shaped plan and cross-section of square. The storage capacity of the collapsible water tank was caculated to meet the water demand for irrigation in 30 a cultivated land for 10-year frequancy drought. The tank has a cuboid shape with a capacity of 30 ㎥, 5 m in width and length, 1.2 m in height. This system can supply 92% of the water required for drop irrigation of red pepper and 88% of the water required for drop irrigation of onions in 30 a cultivation land during the month of May and June. In the case of 16-dry days of 10-years frequency, this system is capable to irrigate 100% of required water for red pepper and onion, 76.7% of required water for Omija (Schisandra chinensis), and 51.5% of required water for autumn kimchi cabbage.

Study on Characteristics of Water Management in Agricultural Experimental Site. (농업용수 시험지구의 물관리 특성 조사.분석)

  • Kim, Jin-Taek;Ju, Wook-Jong;Lee, Jong-Nam
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.61-67
    • /
    • 2005
  • Agricultural water for rice growing is the important factor of water resources in Korea. so, it is imperative to know the practice of water management in paddy field. The experimental site has been operated in order to investigate water management practice and water supply discharge since 2001. There are 8 irrigation areas which are observed the water supply discharge in this site. We have investigate the water management practice in this site and we know that the practical date of rice growing stages and the date for calculating the water demand in paddy field. So, There is much differences between the calculated water demand and practical water supply. We could reduce the differences by calculating the water demand using the practical date of rice growing stages.

  • PDF

Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios (기후변화 시나리오를 고려한 농업용 저수지의 미래 용수공급 지속가능성 전망)

  • Nam, Won-Ho;Hong, Eun-Mi;Kim, Taegon;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.59-68
    • /
    • 2014
  • Climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply, water management, droughts and floods. Understanding the impact of climate change on reservoirs in relation to the passage of time is an important component of water resource management for stable water supply maintenance. Changes on rainfall and hydrologic patterns due to climate change can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the future climate conditions. The purpose of this study is to predict the sustainability of agricultural water demand and supply under future climate change by applying an irrigation vulnerability assessment model to investigate evidence of climate change occurrences at a local scale with respect to potential water supply capacity and irrigation water requirement. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under climate change.

Irrigation Water Requirements for Upland Crops Using Rainfall Data and Water Management Guidelines (강우 자료와 밭작물 물관리 지침서를 이용한 노지 밭작물의 관개 필요량 산정 연구)

  • Choi, Yonghun;Kim, Youngjin;Kim, Yongwon;Kim, Minyoung;Jeon, Jonggil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.121-130
    • /
    • 2019
  • The purpose of this study is to determine the amount of irrigation water for upland crop growth based on the 30 year of historical rainfall data and the water management guidelines as a reference. Five regions and ten crops were selected by their cultivation size. The changes of soil moisture contents were calculated using daily mean rainfall and irrigation demand. This study assumed that crops are irrigated when the soil moisture contents fell below of the field capacity for more than 5 days, which is the drought condition defined by RDA. The maximum irrigation water requirements was 167.2 mm for chinese cabbage during the growing season, which was followed by corn (112.0 mm), daikon (102.3 mm), spinach (66.1 mm), lettuce (56.7 mm), pepper (46.5 mm), potato (33.9 mm), sweet tomato (27.4 mm), peanut (11.5 mm) and bean (10.3 mm), The results of this study could contribute to providing valuable data to determine the capacity of irrigation facilities and to establish the emergency operation plans under extreme unfavorable weather condition (heat wave, etc.) for crop growth.

Development of Clean Water Supplying System for Greenhouse Cultivation and Convenience Water (II) - Assessment of the FDA System through a Site Application - (시설용수 및 영농편의용수 공급시스템 개발 (II) - FDA 시스템 현장적용성 평가 -)

  • Lee, Kwang-Ya;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.101-106
    • /
    • 2009
  • The previous study developed the Filter-Disinfection-Adsorption (FDA) system to provide clean irrigation water for greenhouse cultivation as well as convenience water to farmers. In this study, the field examination was undertaken to assess performance of the FDA system. The field application was made in the suburb of Daegu, one of the large city in Korea. The study area located near by down-stream of Gum-Ho river is suffering low irrigation water quality problems with no water supply service facilities. Four water quality parameters including Suspended Solid (SS), Biological Oxygen Demand (BOD), coliform, and turbidity were selected to test the purification performance of FDA system. Also in order to improve the system, this study investigated the defects of using the FDA system through field monitoring. As results, it was found that this system can be used to supply good quality of irrigation water for greenhouse cultivation and also provide convenience water to farmers in the field areas of no water supply services.

Climate change impact assessment of agricultural reservoir using system dynamics model: focus on Seongju reservoir

  • Choi, Eunhyuk
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.311-331
    • /
    • 2021
  • Climate change with extreme hydrological events has become a significant concern for agricultural water systems. Climate change affects not only irrigation availability but also agricultural water requirement. In response, adaptation strategies with soft and hard options have been considered to mitigate the impacts from climate change. However, their implementation has become progressively challenging and complex due to the interconnected impacts of climate change with socio-economic change in agricultural circumstances, and this can generate more uncertainty and complexity in the adaptive management of the agricultural water systems. This study was carried out for the agricultural water supply system in Seongju dam watershed in Seonju-gun, Gyeongbuk in South Korea. The first step is to identify system disturbances. Climate variation and socio-economic components with historical and forecast data were investigated Then, as the second step, problematic trends of the critical performance were identified for the historical and future climate scenarios. As the third step, a system structure was built with a dynamic hypothesis (causal loop diagram) to understand Seongju water system features and interactions with multiple feedbacks across system components in water, agriculture, and socio-economic sectors related to the case study water system. Then, as the fourth step, a mathematical SD (system dynamics) model was developed based on the dynamic hypothesis, including sub-models related to dam reservoir, irrigation channel, irrigation demand, farming income, and labor force, and the fidelity of the SD model to the Seongju water system was checked.

Projecting Future Paddy Irrigation Demands in Korea Using High-resolution Climate Simulations (고해상도 기후자료를 이용한 우리나라의 논 관개요구량 예측)

  • Chung, Sang-Ok
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.169-177
    • /
    • 2011
  • The impacts of climate change on paddy irrigation water demands in Korea have been analyzed. High-resolution ($27{\times}27\;km$) climate data for the SRES A2 scenario produced by the Korean Meteorological Research Institute (METRI) and the observed baseline climatology dataset were used. The outputs from the ECHO-G GCM model were dynamically downscaled using the MM5 regional model by the METRI. The Geographic information system (GIS) was used to produce maps showing the spatial changes in irrigation water requirements for rice paddies. The results showed that the growing season mean temperature for future scenarios was projected to increase by $1.5^{\circ}C$ (2020s), $3.3^{\circ}C$ (2050s) and $5.3^{\circ}C$ (2080s) as compared with the baseline value (1971~2000). The growing season rainfall for future scenarios was projected to increase by 0.1% (2020s), 4.9% (2050s) and 19.3% (2080s). Assuming cropping area and farming practices remain unchanged, the total volumetric irrigation demand was projected to increase by 2.8% (2020s), 4.9% (2050s) and 4.5% (2080s). These projections are contrary to the previous study that used HadCM3 outputs and projected decreasing irrigation demand. The main reason for this discrepancy is the difference with the projected climate of the GCMs used. The temporal and spatial variations were large and should be considered in the irrigation water resource planning and management in the future.

NON-POINT SOURCE POLLUTANT MODELING IN USING GIS ASSESSMENT IN STREAM NETWORK AND THE IRRIGATION REGION

  • Ju-Young;Kutty Arvind
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.147-156
    • /
    • 2004
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program (Guy Fipps and Craig Pope, 1998), projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in kg/$km^2$/year of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV.

  • PDF

Climate Change Impacts on Paddy Water Requirement (기후변화가 논 필요수량에 미치는 영향)

  • Yun, Dong-Koun;Chung, Sang-Ok;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.39-47
    • /
    • 2011
  • The aim of the study is to predict potential evapotranspiration and crop water requirement using meteorological data from MIROC3.2 with A1B scenario. Increase of evapotranspiration due to temperature rise can be observed out of the analysis, while effective rainfall decreased. The evapotranspiration elevation results in large amount of crop water requirement in the paddy farming. It can be seen that rainfall intensification at non-irrigation period brings effective rainfall decrease, while contributes to higher demand of crop water at irrigation period. It is necessary to secure additional water resources to adapt the climate change. It is expected that estimation on potentialevapotranspiration in this study can be used for formulation of master plan of water resources.