• 제목/요약/키워드: Irrigation water demand

검색결과 141건 처리시간 0.031초

비모수적 추계학적 일 강우 발생기 기반의 빗물이용시설 신뢰도 평가모형의 부산광역시 해운대 신시가지 적용 (Application of Rainwater Harvesting System Reliability Model Based on Non-parametric Stochastic Daily Rainfall Generator to Haundae District of Busan)

  • 최치현;박무종;백천우;김상단
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.634-645
    • /
    • 2011
  • A newly developed rainwater harvesting (RWH) system reliability model is evaluated for roof area of buildings in Haeundae District of Busan. RWH system is used to supply water for toilet flushing, back garden irrigation, and air cooling. This model is portable because it is based on a non-parametric precipitation generation algorithm using a markov chain. Precipitation occurrence is simulated using transition probabilities derived for each day of the year based on the historical probability of wet and dry day state changes. Precipitation amounts are selected from a matrix of historical values within a moving 30 day window that is centered on the target day. Then, the reliability of RWH system is determined for catchment area and tank volume ranges using synthetic precipitation data. As a result, the synthetic rainfall data well reproduced the characteristics of precipitation in Busan. Also the reliabilities of RWH system for each of demands were computed to high values. Furthermore, for study area using the RWH system, reduction efficiencies for rooftop runoff inputs to the sewer system and potable water demand are evaluated for 23%, 53%, respectively.

Development of drought Tolerant Temperate Rice Variety by Pyramiding QTLs, Pup1 and DTY4.1

  • Jae-Hyuk Han;Na-Hyun Shin;Ian Paul Navea;Jin-Woo Lee;IL-Ryong Choi;Joong Hyoun Chin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.206-206
    • /
    • 2022
  • Sustainable agriculture is a potential strategy to enable agricultural cultivation systems to feed the growing population under climate change. Sustainable agriculture consists of environment-friendly farming methods that allow the production of crops with minimal harm to the ecosystem. Early establishment in rice might be helpful to adopt sustainable agriculture with less inputs, such as water and phosphorus fertilizer. Two QTLs conferring tolerance to abiotic stress and low nutrition condition, DTY4.1 and Pup1, respectively, are effective for good establishment in the early growth stage under low water and phosphorus fertilizer application. We developed 'Sechanmi' and 'MSI 1-DTY' harboring Pup1 and DTY4.1 into MS11, a japonica rice variety adaptable to tropical regions, using Marker-Assisted Backcrossing (MABC). MS 11-PD lines were developed to meet the demand for less water and P fertilizer application throughout the growth stage of rice. In the F5 generation, water-saving or rainfed cultivation was performed in different P (phosphorus) content. Irrigation was applied only when severe drought was observed one month after transplanting. There was no significant difference observed between the parents and MS11-PD lines in low P conditions. However, MS11-PD lines had more tillers in P-supplied conditions compared to that of the parents 40 and 50 days after transplanting. Under the same amount of P, MS11-PD lines might have higher phosphorus uptake capacity than the parents, increasing the number of tillers and showing better early establishment. The better vegetative growth stage is one of the factors that can potentially increase production by way of higher number of panicles. Through this breeding strategy, it is possible to attain sustainable agriculture by applying less P and water to address the need of a growing population.

  • PDF

동진강 유역내 하천의 특성별 영향평가 (Evaluation of Water Quality Characteristics on Tributaries of Dongjin River Watershed)

  • 윤순강;김원일;김진호;김선종;고문환;엄기철
    • 한국환경농학회지
    • /
    • 제21권4호
    • /
    • pp.243-247
    • /
    • 2002
  • 본 연구는 동진강 유역의 수질 보전을 위한 기초자료를 얻기 위하여 동진강 본류와 이에 유입되는 정읍천을 대상으로 2001년 5월부터 11월까지 수질 모니터링을 실시하였다. 동진강 본류의 수질은 BOD기준으로 상수원 II$\sim$IV등급(2.84$\sim$6.45 mg/L)으로 지점별로는 DJ6(정읍천 합류후)이 4.07 mg/L로 높게 나타나 III급수의 수질을 유지하였다. COD는 지점별로 11.20$\sim$32.96 mg/L의 범위로 정읍천 합류후의 농도가 32.96 mg/L로 가장 높게 나타나 정읍천을 통한 본류의 오염물질량의 증가를 알 수 있었다. T-N의 경우 4.16$\sim$5.84 mg/L의 범위로 유역 전반에 걸쳐 오염이 이루어지고 있는 것으로 나타났고, T-P의 경우 BOD, COD와 마찬가지로 정읍천 합류후가 0.19 mg/L로 타 지점에 비하여 높게 조사되었다. 본류의 COD의 경우 장마후 갈수기에 높은 농도를 나타냈고, T-P의 경우는 하천의 유량이 증가하는 홍수기보다 장마전 갈수기의 오염정도가 높고 이후 장마후 갈수기로 갈수록 수질이 악화되는 것으로 조사되었다. 동진강 수질의 오염은 주로 하류로 갈수록 그 정도가 심하게 나타나는데, 이것은 정읍천을 통해 유입되는 도시생활하수와 인근 공장단지의 산업폐수가 그 주 요인으로 오염물질(BOD, COD T-N 및 T-P)의 농도가 상승하는 주원인이 되고 있다. 따라서, 동진강 수계의 수질관리를 위해 주 오염원이 되고 있는 정읍천의 도시생활하수와 공장단지에서 방류되는 산업폐수의 제어에 대한 대책이 먼저 이루어져야 할 것으로 판단된다.

DESIGN AND DEVELOPMENT OF IRRI POWER TILLER-DRIVEN DRILLING RIG FOR SHALLOW TUBEWELLS

  • Salazar, G.C.;Quick, G.R.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.227-238
    • /
    • 1993
  • IRRI Engineering Division has developed a well drilling rig attachment that matched power tiller or hand tractor. It was designed in response to the growing demand for ground water utilization for small-scale irrigation, especially in drought-sticken and rained farms in Asian countries. The power tiller-driven rig can drill 30 meters of 100mm well in an unconsolidated formation in one day and can be rapidly converted from rotary to jetting or to the percussion method of drilling to suit different soil and rock formation. In addition, the power tiller can be quickly installed or removed from the rig frame and can be used for transporting the rig to other sites. The rig can be dismantled into smaller sub-assemblies for carrying by hand into less accessible areas. One manufacturer in Central luzon Philippines has started to produce the rig for well drillers in Central Luzon. The Department of Agriculture in the Philippines have procured thirty three(33) units of these machines f r their Shallow Tubewell program.

  • PDF

CMIP6 시나리오 기반 담수호 유역 농업용수 수요량 변화 평가 (Assessment of Irrigation Water Demand Changes Based on CMIP6 Scenario)

  • 황순호;전상민;김석현;이현지;김재경;김시내;강문성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.243-243
    • /
    • 2021
  • 담수호는 방조제 건설 및 담수화를 통해 다양한 용수공급을 위해 개발된 수자원으로서 담수화된 수자원은 농업용수로 활용이 가능하다. 특히 간월호의 경우, 담수호 주변이 주로 농경지로 이루어져 있으며, 담수화된 수자원은 농업용수를 공급하기 위해 활용되고 있다. 따라서 간월호의 수자원 관리를 위한 장기적인 계획 수립을 위해서는 간월호의 주요 용수공급 대상이 되는 농경지 물수요량의 미래 변화에 대한 평가가 우선되어야 한다. 최근 IPCC (Intergovernmental Panel on Climate Change)에서는 기존 대표농도경로에 사회·경제 조건을 추가하여 공동 사회-경제 경로 (SSP, Shared Socioeconomic Pathways)라는 개념을 새롭게 제안하였으며, 이를 기반으로 6차 평가보고서 (6th Assessment Report, AR6)를 발간한 바 있다. 본 연구에서는 CMIP6 기후변화 자료를 기반으로 한 기후변화 자료를 통해 담수호 유역의 농업용수 수요량 변화를 평가하였으며, Makov chain 모형을 이용한 토지이용변화 자료를 검토하여 기후변화 뿐만 아니라 토지이용변화를 함께 고려한 미래 농업용수 수요량 변화 평가를 수행하였다. 이를 통해 CMIP6 시나리오별 미래 농업용수 수요량 변화를 검토하고, 현재 간월호의 용수공급 능력과 비교를 통해 간월호의 수자원 관리 능력을 평가하는 것이 본 연구의 목적이다.

  • PDF

An Analysis of the Rice Situation in Nicaragua for Improving National Production.

  • Chang-Min Lee;Oporta Juan;Ho-Ki Park;Hyun-Su Park;Jeonghwan Seo;Man-Kee Baek;Jae-Ryoung Park;O-Young Jeong
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.90-90
    • /
    • 2022
  • Nicaragua is located in Central America, climatic conditions are considered tropical dry forest. Statistics reflex that in Nicaragua exits 24,000 rice farmers. National rice production only covers 73% of the national consumption. It exists two sowing system: irrigation and rainfed. Varieties used in both systems are mid-late maturity (120-135 days), there are 14 released varieties for irrigation, eight for rainfed, and eight landraces used in rainfed. The current breeding system (introduction of lines from Colombia) has increased the national production, however, has some limitation due to the lack of enough variability, reducing the proability of finding good genotypes and therefore the possibility of satisfying 100% of the demand. The purpose of this study was to analyze the problems that must be resolved in the short and long term to improve rice productivity in Nicaragua. In this paper we explain some proposal for an improvement plan. The selection of varieties with high adaptability to various cultivation environmental conditions it is necessary, also to thoroughly manage seed purity to supply certified seeds. In rice cultivation technology, it needs to improve seedling standing and weeding effect by improving soil leveling and water-saving cultivation technology. Also, proper fertilization and planting density must be established in irrigated and rain-fed areas. Furthermore, capacity must be strengthened by collecting and training with the most recent agricultural technology information, as well as by revitalizing the union rather than the individual farmer. It is necessary to develop varieties highly adaptable to the Nicaraguan cultivation environment, as well as to expand irrigation facilities and cultivation technology suitable for weather conditions in rain-fed areas. Last, it is necessary to maintain the consistency of agricultural policy for continuous and stable rice production in response to climate change events such as drought or intermittent heavy rain.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.232-232
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of 6.29 Gm3 per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.408-408
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of $6.29Gm^3$ per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

우리나라 저수지 수질에 미치는 수문지형 및 유역 토지피복의 영향 (Effects of Hydrogeomorphology and Watershed Land Cover on Water Quality in Korean Reservoirs)

  • 조현석;조형진;조강현
    • Ecology and Resilient Infrastructure
    • /
    • 제6권2호
    • /
    • pp.79-88
    • /
    • 2019
  • 우리나라 저수지의 수질 특성과 이에 영향을 미치는 환경요인을 파악하기 위하여, 운영목적, 수위변동 및 지리적 분포가 다양한 73개 저수지를 선정하여 수질 요인으로 화학적산소요구량 (COD), 엽록소 a (Chl a), 총인 (TP), 총질소 (TN)를, 수문지형 요인으로 연수위변동폭, 총저수량, 댐의 고도, 유역 면적, 호안발달도 (shoreline development index)를, 토지피복 요인으로서 산림, 농경지 및 도시화지역의 면적비율을 조사하였다. 저수지 수질은 유역의 도시화지역과 농업지역의 면적 비율이 크고, 고도가 낮고 연수위변동폭과 유역면적이 좁으며 총저수량이 적고 원형에 가까운 형태의 저수지에서 더욱 부영양화가 심하였다. 저수지 운영목적에서는 농업용수용 저수지가 홍수조절용 저수지보다 수질이 좋지 않았다. 변수선택과 경로분석의 결과에서, TP에 의한 Chl a에 영향을 받는 COD는 수위변동폭과 호안발달도에 의하여 직접적으로 영향을 받았다. 또한 TP는 유역의 도시화면적에 의하여 직접적으로 영향을 받으며 토지이용은 저수지의 고도와 관련이 있었다. 한편 TP는 수위변동폭과 호안발달도에 영향을 받았다. 결론적으로 우리나라의 저수지 부영양화는 유역의 토지이용, 수문적, 지형적 특성에 의하여 영향을 받으며, 특히 저수지 운영목적에 따른 인위적인 물관리에 의한 수위변동과 저수지의 위치에 의하여 수질 특징이 결정된다고 생각된다.

농업용 저수지에 설치한 인공식물섬에 의한 오염물질 농도의 변화 (Changes in Pollutant Concentrations by Artificial Floating Island Installed in Reservoir for Irrigation)

  • 양홍모
    • 한국환경복원기술학회지
    • /
    • 제9권2호
    • /
    • pp.23-32
    • /
    • 2006
  • Total suspended solids (TSS), five-day biochemical oxygen demand ($BOD_5$), total nitrogen (T-N), and total phosphorous (T-P) concentrations around and under a floating island were examined from October 2002 to September 2003. The island was installed in July 2002 on the surface of an agricultural irrigation reservoir located in the southern part of the Korean Peninsula. It was composed of six polyethylene panels. Each panel was 2 m (length) ${\times}$ 1 m (width) ${\times}$ 0.02 m (thick) and had about thirty-two holes each with a diameter of eight centimeters, through which plant roots grew down into the water. Coconut fibers of nine-centimeters in height were placed on the panel, which sustained plants rhizomes and roots. Both the fibers and the panel were raped with polyethylene wire mashes. About thirty irises (Iris pseudoacorus) were planted into the fibers of each panel. The concentrations of TSS, $BOD_5$, T-N and T-P below the island during the iris-growing season averaged 9.70, 2.59, 3.61 and 0.14 mg/L, respectively and those around it averaged 9.99, 2.83, 4.07 and 0.16 mg/L, respectively. The average concentrations of TSS, $BOD_5$, T-N and T-P below it during the iris non-growing season were 8.68, 2.37, 3.25 and 0.14 mg/L, respectively and those near it were 8.76, 2.43, 3.34 and 0.15 mg/L, respectively. At a significance level of ${\alpha}$=0.05, $BOD_5$, T-N and T-P concentrations under the island during the iris-growing season were significantly low when compared with those around it except TSS. No differences in TSS, $BOD_5$, T-N and T-P concentrations between around and near it were found at a significance level of ${\alpha}$=0.05 during the iris non-growing season. The removal of $BOD_5$, T-N, and T-P during the growing season were significantly high when compared with those during the non-growing season. TSS abatement of the floating island was very low during both the growing and non-growing seasons. The island's reductions of $BOD_5$, T-N and T-P were good during the growing season, especially T-N and T-P, which have been considered as primary pollutant sources causing the water quality degradation of reservoirs. The removal of T-N and T-P was primarily attributed to the absorption of nitrogen and phosphorous by the irises during the growing season.