• Title/Summary/Keyword: Irrigation time

Search Result 445, Processing Time 0.03 seconds

Comparison Study of Water Tension and Content Characteristics in Differently Textured Soils under Automatic Drip Irrigation (자동점적관수에 의한 토성별 수분함량 및 장력 변화특성 비교 연구)

  • Kim, Hak-Jin;Ahn, Sung-Wuk;Han, Kyung-Hwa;Choi, Jin-Yong;Chung, Sun-Ok;Roh, Mi-Young;Hur, Seung-Oh
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.341-348
    • /
    • 2013
  • Maintenance of adequate soil tension or content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil tension and content for precision irrigation would allow optimal soil water condition to crops and minimize the adverse effects of water stress on crop growth and development. This research reports on a comparison of soil water tension and content variations in differently textured soils over time under drip irrigation using two different water management methods, i.e. pulse time and required water irrigation methods. The pulse time-based irrigation was performed by turning the solenoid valve on and off for preset times to allow the wetting front to disperse in root zone before additional water was applied. The required water estimation method was a new water control logic designed by Rural Development Administration that applies the amount of water required based on a conversion of the measured water tension into water content. The use of the pulse time irrigation method under drip irrigation at a high tension of -20 kPa and high temperatures over $30^{\circ}C$ was not successful at maintaining moisture tensions within an appropriate range of 5 kPa because the preset irrigation times used for water control could not compensate for the change in evapotranspiration during day and night. The response time and pattern of water contents for all of the tested soils measured with capacitance-based sensor probes were faster and more direct than those of water tensions measured with porous and ceramic cup-based tensiometers when water was applied, indicating water content would be a better control variable for automatic irrigation. The required water estimation-based irrigation method provided relatively stable control of moisture tension, even though somewhat lower tension values were obtained as compared to the target tension of -20 kPa, indicating that growers could expect to be effective in controlling low tensions ranging from -10 to -20 kPa with the required water estimation system.

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (2) -Garlic and Cucumber- (밭작물소비수량에 관한 기초적 연구(II)-마늘 및 오이-)

  • 김철기;김진한;정하우;최홍규;권영헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study is to find out the basic data for irrigation plans of garlic and cucumber during the growing period, such as total amount of evapotranspiration, coefficients of evapotranspiration at each growth stage, the peak stage of evapotranspiration and the maximum evapotranspiraton, optimum irrigation point, total readily available moisture, and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation points with pP 1.7-2.1, pP 2.2-2.5, pP 2.6-2.8, for garlic and those with pP 1.9, pF 2.3, pP 2.7, for cucumber, soil textures of silty clay, sandy loam and sandy soil for both garlic and cucumber, with two replications. The results obtained are summarized as follows 1.There was the highest significant correlation between the avapotranspiration of garlic and cucumber and the pan evaporation, beyond all other meteorological factors considered, as mentioned in the previous paper. Therefore, the pan evaporation is enough to be used as a meteorological index measuring the quantity of evapotranspiration. 2.1/10 probability values of maximum total pan evaporation during growing period for garlic and cucumber were shown as 495.8mm and 406.8mm, respectively, and those of maximum ten day pan evaporation for garlic and cucumber, 63.8mm and 69.7mm, respectively. 3.The time that annual maximum of ten day pan evaporation can be occurred, exists at any stage between the middle of May and the late of June(harvest period) for garlic, and at any stage of growing period for cucumber. 4.The magnitude of evapotranspiration and of its coefficient for garlic and cucumber was occurred in the order of pF 1.7-2.1>pF 2.2-2.5>pF 2.6-2.8 and of pF 1.9>pF 2.3>pF2.7 respectively in aspect of irrigation point and of sandy loam>silty clay>sandy soil in aspect of soil texture for both garlic and cucumber. 5.The magnitude of leaf area index was shown in the order of pF 2.2-2.5>pF 1.7-2.1>pF 2.6-2.8 for garlic and of pF 1.9>pF 2.3>pF 2.7 for cucumber in aspect of irrigation point, and of sandy loam>sandy soil>silty clay in aspect of soil texture for both garlic and cucumber. 6.1/10 probability value of evapotranspiration and its coefficient during the growing period for garlic were shown as 391.7mm and 0.79 respectively, while those of cucumber, 423.lmm and 1.04 respectively. 7.The time the maximum evapotranspiration of garlic can be occurred is at the date of thirtieth before harvest period and the time for cucumber is presumed to be at the date of sixtieth to seventieth after transplanting, At that time, 1/10 probability value of ten day evapotranspiration and its coefficient for garlic is presumed to be 65.lmm and 1.02 respectively, while those of cucumber, 94.8mm and 1.36 respectively. 8.In aspect of irrigation point, the weight of raw garlic and cucumber were increased in the order of pF 2.2-2.5>pF 1.7-2.1>pF 2.6-2.8 and of pF 1.9>pF 2.3>pF 2.7 respectively. Therefore, optimum irrigation point for garlic and cucumber is presumed to be pF 2.2-2.5 and pF 1.9 respectively, when the significance of yield between the different irrigation treatments is considered. 9.Except the mulching period of garlic that soil moisture extraction patterns were about the same, those of garlic and cucumber have shown that maximum extraction rate exists at 7cm deep layer at the beginning stage after removing mulching for garlic and at the beginning stage of growth for cucumber and that extraction rates of 21cm to 35cm deep layer are increased as getting closer to the late stage of growth. 10.Total readily available moisture of garlic in silty clay, sandy loam, sandy soil become to be 18.71-24.96mm, 19.08-25.43mm, 10.35- 13.80mm respctively on the basis of the optimum irrigation point with pF 2.2-2.5, while that of cucumber, 11.8lmm, 12.03mm, 6.39mm respectively on the basis of the optimum irrigation point with pF 1.9. 11.The intervals of irrigation date of garlic and cucumber at the growth stage of maximum consumptive use become to be about three and a half days and one and a half days respectively, on the basis of each optimum irrgation point.

  • PDF

Initial Growth Responses of Four Woody Plants for Indoor Landscaping according to Irrigation Frequency (관수주기에 따른 실내녹화용 목본식물 4종의 초기 생육반응)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • This study was carried out to investigate growth characteristics of woody plants that are widely used indoors in accordance with irrigation frequency and to find the optimum irrigation conditions for plants that help to improve the indoor environment. Four woody plants used in this study included Ardisia pusilla, Clusia rosea, Fatsia japonica, and Ficus elastica. They were planted in pots with a diameter of 10cm and cultivated in three different irrigation frequencies: two times per week, one time per week, and one time per two weeks. After 120 days, they were measured by plant height, fresh weight, dry weight, SPAD value, leaf color, leaf water potential, chlorophyll fluorescence (Fv/Fm), and photosynthetic rate. The average soil moisture content was $48.8{\pm}2.1%$ in two times per week, $25.2{\pm}4.4%$ in one time per week, and $10.3{\pm}2.4%$ in one time per two weeks. For A. pusilla, leaf water potential was higher, and Fv/Fm value was 0.731 in two times per week irrigation, showing more wetness. For A. pusilla, F. japonica and F. elastica photosynthetic rate was significantly lower in one time per two weeks irrigation, appearing to be more sensitive to drying than C. rosea. When irrigated one time per week, with the soil's volume average moisture content of 25%, all four woody plants used in this experiment proved to grow smooth. Thus, it was determined to be good for use in indoor landscaping.

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Effect of Delayed Transplanting plus Water Stress on the Growth and Yield of the Rice Plants (한발로 인한 벼의 이앙지연 및 수분결핍장애가 생육 및 수량에 미치는 영향)

  • 권용운;소창호;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.3
    • /
    • pp.79-88
    • /
    • 1986
  • Drought occurs most frequently and severely around transplanting season of the rice plants in Korea. Shortage of water due to drought for the paddy fields often delays transplanting, and less often the rice plants are subjected to water stress after delayed transplanting. The present study aimed at quantification of the rice crop loss due to delayed transplanting, different inten3ity of water stress, and the combined effect of delay in transplanting followed by water stress for better use of limited water for irrigation under drought. The rice variety Chucheong, a japonica, and Nampung, an indica x japonica, were grown, transplanted to 1/200 a plastic pots, and subjected to different timing of transplanting and degree of water stress under a rainfall autosersing, sliding clear plastic roof facility with completely randomized arrangement of 5 replications. The results obtained are summarized as follows: 1.Twelve days or 22 days delay in transplanting without water stress reduced rice yield by 25% and 43% in the japonica variety, and by 15% and 60% in the indica x japonica variety. 2.The 10 days or 20 days water stress developed without irrigation after drainage in the rice plants transplanted at proper time lowered the water potential at the paddy soil 10cm deep to -4 bar, and -12 bar and caused rice yield reduction by 14%, and 45% in the japonica variety and by 8%, and 50% in the indica X japonica variety. 3.The 12 days delay in transplanting and 10 days or 20 days water stress reduced rice yield by 39% and 59% in the japonica variety, and by 38% and 52% in the indica x japonica variety. The 22 days delay in transplanting plus 10 days water stress caused yield reduction by 76%, i.e. meaningless yield, in both varieties. 4.The intermittent irrigation just to wet the soil body for 10 days after 10 days water stress without irrigation increased rece yield by 12 to 16% compared to the rice plants water stessed without irrigation continuously for 20 days in both varieties respectively. 5.The above results suggest strongly 1) to transplant the rice plants at proper .time even with some water stress rather than delay for sufficient water from later rainfall, and 2) to distribute insufficient irrigation water to broader area of transplanted rice with limited irrigation for better use of limited irrigation water. A greater sensitivity of japonica variety to a moderate water stress than the indica X japonica variety during initial rooting and tillering stage was noticed. To cope with frequent drought in rice culture, firstly the lasting time of transplanting without yield reduction should be clarified by region and variety, and secondly a scheme of rational distribution of limited water should be developed by region with better knowledge on the varietal distribution of limited water should be developed by region with better knowledge on the varietal responses to varying intensity of water stress.

  • PDF

Improvement of Water and Fertilizer Use Efficiency by Daily Last Irrigation Time for Tomato Perlite Bag Culture (토마토 펄라이트 자루재배에서의 관수마감시각에 따른 용수이용효율 및 비료이용효율 증진)

  • Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.408-412
    • /
    • 2009
  • Daily last time of irrigation in perlite bag culture was investigated to get high water use efficiency (WUE) and fertilizer use efficiency (FUE) and also sustain high productivity for tomato. The water content in the substrate was higher as the last time of irrigation was later from 4 to 1hour before sunset. The growth were not significantly different in all treatments. The marketable yield was the highest in treatments of 1 or 2hours before sunset and the lowest in treatment of 4hours. In the result to investigate for 128days WUE and FUE were the lowest in treatment of 1hour before sunset but the highest in treatment of 3hours before sunset. In the conclusion, it looks best to end irrigation 2~3hours before sunset in the aspects of plant growth, yield, WUE, and FUE.

A Study on Effect of Repair and Improvement for Irrigation Facilities on Heavy Rain Damage (수리시설개보수사업이 호우피해에 미치는 효과 분석)

  • Lim, Cheong-Ryong;Yi, Hyang-mi;Lee, Seok-Joo
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.1
    • /
    • pp.61-66
    • /
    • 2018
  • The purpose of this study is to identify the factors related to the heavy rain damage and to identify effect of repair and improvement for irrigation facilities on heavy rain damages. The results of the analysis are as follows. First, the imbalance of precipitation became worse over time from using the coefficient of variation. Second, the analysis using Spearman correlation coefficient shows positive relationship between heavy rain damage amount and precipitation amount, and negative correlation between heavy rain damage amount and repair and improvement for irrigation facilities cost. Third, the analysis of the panel regression model shows that the negative impact of the repair and improvement for irrigation facilities cost on the heavy rain damage, which means that the increase of the repair and improvement for irrigation facilities cost can reduce the heavy rain damage.

Multi regression analysis of water quality characteristics in lowland paddy fields

  • Kato, Tasuku
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.36-36
    • /
    • 2012
  • Drainage water in lowland paddy fields is quantitatively influenced recycle and/or repeated irrigation by irrigation facilities, i.e. pumps, check gates, small reservoirs and so on. In those drainage channels, nutrients accumulation and increasing organic matters are considered to be occurred, and water quality would be degraded not only environmental aspect but irrigation purpose. In general, Total Nitrogen (T-N) is interested water quality index in irrigation water, because high nitrogen concentration sometimes caused decreasing rice production by excess growth and fallen or degrading quality of taste, then, farmers would like to clear water less than 1mg/L of T-N concentration. In drainage channel, it is known that the nitrogen concentration change is influenced by physical, chemical and biological properties, i.e, stream or river bed condition, water temperature, other water quality index, and plant cover condition. In this study, discharge data (velocity and level) in a drainage channel was monitored by an Acoustic Doppler system and water quality was sampled at same time in 2011. So those data was analyzed by multi regression model to realize hydrological and environmental factors to influence with nitrogen concentration. The results showed the difference tendency between irrigation and non-irrigation period, and those influenced factors would be considered in water quality model developing in future.

  • PDF

Influences of Chinese Cabbage Growth and Soil Salinity to Alternative Irrigation Waters (대체관개 용수에 의한 배추생육 및 토양 염류도에 미치는 영향)

  • Shin, Joung-Du;Park, Sang-Won;Kim, Won-Il;Lee, Jong-Sik;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Objective of this experiment was to investigate the growth effects of Chinese cabbage and soil salinity to alternative irrigation waters for drought periods. The treatments were consisted of the discharge water from industrial wastewater treatment plant (DIWT), the discharge water from municipal wastewater treatment plant (DMWT) and ground water as the control. For the chemical compositions of alternative water, it appeared that concentrations of the $Ni^+$ and SAR values in DIWT were over the reuse criteria of other countries for irrigation, but CODcr concentration in DMWT was higher than the reuse criteria for agricultural irrigation. According to classification of water by $EC_i$ value, DIWT and DMWT are ranged from 0.7 to $2.0dS\;m^{-1}$, slight salinity. Average harvest indexes were 0.64 for DIWT and 0.63 for DMWT as compared to 0.61 of the control regardless of irrigation periods. SAR value in soil was increased with prolonging the irrigation periods at head forming stage, but not much difference except for 30 days of irrigation period at harvesting time for DIWT. However, it was not much difference along with irrigation periods through the growth stages for DMWT as compared with the groundwater. At harvesting time, average $EC_e$ for the soil irrigated with alternative agricultural waters was $0.017dS\;m^{-1}$ for its DIMT and $0.036dS\;m^{-1}$ for its DMWT as compared to $0.013dS\;m^{-1}$ of its groundwater as the control. For $NH_4-N$ concentrations, it observed that there were no differences among the treatments with different irrigation periods at head forming stage in soil after irrigation. Also, $NO_3-N$ concentration in soil was increased up to 20 days after irrigation, and then decreased at 30 days after irrigation with DMWT at head forming stage. The $Ni^+$ concentration in upper layer soil (0-15 cm) irrigated with DIWT was increased with prolonging the irrigation period at head forming stage, but it was dramatically decreased and almost constant in all the treatments at harvesting time. Therefore, it might be concluded that there was potentially safe to irrigate the discharge water from municipal wastewater treatment plant for 20 days after transplanting to drought periods with cultivating the Chinese cabbage.