• Title/Summary/Keyword: Irrigation Reservoir

Search Result 318, Processing Time 0.032 seconds

Lifetime System Reliability for Optimum Management of Reservoirs for Irrigation (저수지의 최적관리를 위한 생애체계 신뢰성 해석 연구 - 제체의 생애분포함수 유도 중심 -)

  • Lee, Joon-Gu;Park, Kwang-Soo;Shin, Su-Gyun;Kim, Kwan-Ho;Kim, Myung-Won;Kim, Han-Joung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.359-362
    • /
    • 2003
  • This research deriving the lifetime distribution function of embank as one of main components in reservoir was carried out by mining the data of precise safety diagnosis in 1995 to 2001 as one of researches that were performed for determining the propriety for making item at design for planning and considering optimal maintenance strategy for service life through acquiring the system function of reservoir as main resource for irrigation and analyzing the life cycle cost of it.

  • PDF

Water Quality Management of Agricultural Reservoirs Considering Effective Water Depth (농업용 저수지의 유효수심과 수질관리방안)

  • Kim, Hyung-Joong;Kim, Ho-Il
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 2010
  • Water quality data for 10 years (2000~2009) from about 826 reservoirs that are operated as a agricultural water quality survey network were analyzed in order to seek water quality management plan based on physical and chemical characteristics of agricultural reservoirs. The 95% reservoirs that exceed agricultural water quality standard of Chl-a (35mg/ $m^3$) had effective water depth shallower than 5m. The reason was that the reservoirs had more inflows of nutrient salts from the watershed, bigger surface water area of weak structure to algae occurrence. As the reservoirs of effective water depth shallower than 5m cover 49% of benefited area for irrigation, it is critical for agricultural water quality management of the reservoirs. The water quality of reservoir with shallower than 5m effective water depth was worse than reservoir with deeper than 5m effective water depth. Therefore, it is desirable that effective water depth of reservoirs make more than 5m for water quality management by building the bank higher and dredging the bottom of reservoirs.

  • PDF

Failure Risk Evaluation to Flood for Irrigation Reservoirs (농업용 저수지의 홍수 취약성 지수 개발)

  • Jang, Min-Won;Choi, Jin-Yong;Lee, Jun-Goo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.135-138
    • /
    • 2005
  • This study began to establish a risk evaluation method for irrigation reservoirs under the overtopping failure mode. To define the risk, reliability analysis was performed using time series of reservoir flood inflow and spillway outflow. The former was defined as a load and the latter was the resistance component. The method results in failure probability, which is calculated by convolution multiplication between probability distribution functions of both components. The proposed method was applied to 3 reservoir sites and each failure probability was determined as 0.0012, 0.00001, and 0.000001 respectively.

  • PDF

Predictive Equations for Deposits and Sediment Yields at Irrigation Reservoirs (관개용 저수지의 퇴사량과 유역 유사량 추정식)

  • 김진택;박승우;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.104-115
    • /
    • 1993
  • The objectives of this paper were to develop predictive equations for reservoir deposits and watershed sediment yields based on sediment survey data for irrigation reservoirs. Hundred reservoirs of various sizes, which have the surveyed data for sediment deposits, were chosen and fourteen watershed physiological and hydrological parameters were investigated. Correlationships between watershed parameters and sediment deposits were investigated and a best fit regression equation was derived, which may be applied for estimating reservoir sediment deposits. The sediment deposits were converted to the watershed sediment yields by applying the trap efficiencies and specific weights. The resulting sediment yields were related to watershed parameters and an empirical predictive equation was also proposed that may be used for rough estimations of watershed sediment yields.

  • PDF

Optimal Operation of the Grouped Agricultural-Reservoirs (농업용 저수지군의 최적 운영)

  • 이기춘;최진규;이장춘;손재권
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.52-60
    • /
    • 1991
  • This study was conducted to investigate the appropriate operation method minimizing the deviation between irrigation water demand and release from the reservoirs, and the simulation technique was used in the operation model. This model was applied to the grouped reservoirs system consisted of Dongsang, Daia and Keungchun reservoirs and Eowoo-weir in Chonbuk FLIA district. The results obtained in this study are summarized as follows; 1.The area above the Eowoo weir point was divided into 6 small watersheds, and daily inflows from each watershed were calculated by Tank model. It showed that the average annual runoff ratio was 40-60% respectively. 2.Based on the Blaney-Criddle formula daily water requirement of Chonbuk FLIA irrigation area was estimated, mean water requirement for paddy field during the irrigation period was 818.lmm. 3.Using the basic data such as inflow and water demand, four different release types were selected. Through the simulated operation the difference between intake water required at Eowoo-weir point and release from the 3 reservoirs was estimated. The best result was obtained when Daia and Keungchun reservoirs are operated parallelly at fixed release ratio and the release of Dongsang reservoir was determined according to the storage of Daia reservoir.

  • PDF

Design and Implementation of Fully Automated Solar Powered Irrigation System

  • Mohammad Fawzi Al Ajlouni;Essam Ali Al-Nuaimy;Salman Abdul-Rassak Sultan;Ali Hammod AbdulHussein Twaij;Al Smadi Takialddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.197-205
    • /
    • 2024
  • This paper presents a fully automated stand-alone irrigation system with GSM (Global System for Mobile Communication) module. Solar energy is utilized to power the system and it is aimed to conserve water by reducing water losses. The system is based on a DC water pump that draws energy from solar panels along with automated water flow control using a moisture sensor. It is also fitted with alert and protection system that consists of an ultrasonic sensor and GSM messages sender that transmits signals showing the levels of the water in the reservoir and the battery charge. The control system is designed to stop the water pump from pumping water either when the battery level drops to equal or less than 10% of its full charge, or when the water level becomes less than 10 cm high in the reservoir. The experimental results revealed that the system is appropriate to use in remote areas with water scarcity and away from the national grid.

Drought Index Calculation for Irrigation Reservoirs (관개용 저수지의 한발지수산정)

  • 김선주;이광야;신동원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.6
    • /
    • pp.103-111
    • /
    • 1995
  • Drought index calculation based on the principal hydrological parameters, such as rainfall and reservoir storage, can estimate the duration and intensity of drought in irrigation reservoirs. It is difficult to build up a drought criteria since the conditions change variously by the reliability of rainfall. Because of the increasing water demands, it is urgent to prepare a generalized positive countermeasure to overcome drought. Water demands can at calculated but the estimation of drought characteristics, and the effective water management method can be established. The purpose of this study is to obtain a drought index and build up a data-base on the reservoir basins for establishing the fundamental hydrological data-base. This Index can observe the behavior of the WSI(Water Supply Index) and the component indices. The results summarized through this study are as follows. 1. WSI value of zero does not correspond to 100% in average due to the skewness in the probability distributions. 2. WSI is not a linear index; that is, given change in terms of water volume or percentage of average does not result in a proportional change on the WSI scale. 3. WSI is not always between the reservoir and the rainfall index in magnitude. This is only true if the component indices are of opposite sign. If they are of the same sign, the SWSI will often have a mangitude greater than either of the component indices. This is easily understood, because the concurrence of extreme values of the same sign for the two components is rarer than the occurrence of extreme values for either of the two components individually.

  • PDF

Estimation of sediment deposition rate in collapsed reservoirs(wetlands) using empirical formulas and multiple regression models (경험공식 및 다중회귀모형을 이용한 붕괴 저수지(습지) 비퇴사량 추정)

  • Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.